Skip to main content

Advertisement

Log in

Phase field modelling of the electromigration behaviour in sintered silver

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Silver sintering has been a promising interconnect technique for high temperature electronics, but the electromigration behaviour of the achieved interconnect structure in service are yet to be fully understood. In this study, a phase field model is developed to study the electromigration behaviour of sintered silver with emphasizing on the migration kinetics of pores and morphology evolution of silver nanoparticles. Results show that the dihedral angle and sintering neck length as well as the migration velocity of the pores are larger with higher ratio of surface energy to grain boundary energy (γs/γgb). Under electric current stressing, the pores migrate to the cathode side and coalesce to form a large pore accompanied by the silver grain growth, larger γs/γgb leads to sharper increase of electrical resistance. The developed model and results provide insights to understand the electromigration behaviour and the open-circuit failure of sintered silver interconnects under electric current stressing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Chen, H. Zhang, Die-Attach Materials for High Temperature Applications in Microelectronics Packaging (Springer, New York, 2019), pp. 1–33

    Book  Google Scholar 

  2. J. Wang, S. Chen, L. Zhang, X. Zhao, F. Duan, H. Chen, Brief review of nanosilver sintering: manufacturing and reliability. J. Electron. Mater. 50(10), 5483–5498 (2021)

    Article  CAS  Google Scholar 

  3. L. Vitos, A. Ruban, H.L. Skriver, J. Kollár, The surface energy of metals. Surf. Sci. 411, 186–202 (1998)

    Article  CAS  Google Scholar 

  4. G. Chen, D. Han, Y.-H. Mei, X. Cao, T. Wang, X. Chen, G.-Q. Lu, Transient thermal performance of IGBT power modules attached by low-temperature sintered nanosilver. IEEE Trans. Device Mater. Reliab. 12, 124–132 (2011)

    Article  CAS  Google Scholar 

  5. W. Zhang, J. Chen, Z. Deng, Z. Liu, Q. Huang, W. Guo, J. Huang, The pressureless sintering of micron silver paste for electrical connections. J. Alloys Compd 795, 163–167 (2019)

    Article  CAS  Google Scholar 

  6. J.G. Bai, Z.Z. Zhang, J.N. Calata, G.-Q. Lu, Low-temperature sintered nanoscale silver as a novel semiconductor device-metallized substrate interconnect material. IEEE Trans. Compon. Packag. 29, 589–593 (2006)

    Article  CAS  Google Scholar 

  7. Y. Mei, T. Wang, X. Cao, G. Chen, G.-Q. Lu, X. Chen, Transient thermal impedance measurements on low-temperature-sintered nanoscale silver joints. J. Electron. Mater. 41, 3152–3160 (2012)

    Article  Google Scholar 

  8. X. Milhet, A. Nait-Ali, D. Tandiang, Y.-J. Liu, D. Van Campen, V. Caccuri, M. Legros, Evolution of the nanoporous microstructure of sintered Ag at high temperature using in-situ X-ray nanotomography. Acta Mater. 156, 310–317 (2018)

    Article  CAS  Google Scholar 

  9. C. Qian, Z. Sun, J. Fan et al., Characterization and reconstruction for stochastically distributed void morphology in nano-silver sintered joints. Mater. Des. 196, 109079 (2020)

    Article  CAS  Google Scholar 

  10. T. Herboth, M. Guenther, A. Fix, J. Wilde, Failure mechanisms of sintered silver interconnections for power electronic applications. In 2013 IEEE 63rd Electronic Components and Technology Conference, pp 1621–1627 (2013)

  11. K. Wakamoto, Y. Mochizuki, T. Otsuka, K. Nakahara, T. Namazu, Tensile mechanical properties of sintered porous silver films and their dependence on porosity. Jpn. J. Appl. Phys. 58, SDDL08 (2019)

    Article  CAS  Google Scholar 

  12. Y. Liu, H. Zhang, L. Wang, X. Fan, G. Zhang, F. Sun, Effect of sintering pressure on the porosity and the shear strength of the pressure-assisted silver sintering bonding. IEEE Trans. Device Mater. Reliab. 18, 240–246 (2018)

    Article  CAS  Google Scholar 

  13. C. Chen, C. Choe, D. Kim, K. Suganuma, Lifetime prediction of a SiC power module by micron/submicron Ag sinter joining based on fatigue, creep and thermal properties from room temperature to high temperature. J. Electron. Mater. 50, 687–698 (2021)

    Article  CAS  Google Scholar 

  14. J. Ordonez-Miranda, M. Hermens, I. Nikitin et al., Measurement and modeling of the effective thermal conductivity of sintered silver pastes. Int. J. Therm. Sci. 108, 185–194 (2016)

    Article  CAS  Google Scholar 

  15. J.N. Calata, G.-Q. Lu, K. Ngo, L. Nguyen, Electromigration in sintered nanoscale silver films at elevated temperature. J. Electron. Mater. 43, 109–116 (2014)

    Article  CAS  Google Scholar 

  16. W.-H. Lin, F.-Y. Ouyang, Electromigration behavior of screen-printing silver nanoparticles interconnects. JOM 71, 3084–3093 (2019)

    Article  CAS  Google Scholar 

  17. A. Kazaryan, Y. Wang, B.R. Patton, Generalized phase field approach for computer simulation of sintering: incorporation of rigid-body motion. Scr. Mater. 41, 487–492 (1999)

    Article  CAS  Google Scholar 

  18. Y.U. Wang, Computer modeling and simulation of solid-state sintering: a phase field approach. Acta Mater. 54, 953–961 (2006)

    Article  CAS  Google Scholar 

  19. K. Chockalingam, V. Kouznetsova, O. Van der Sluis, M. Geers, 2D Phase field modeling of sintering of silver nanoparticles. Comput. Methods Appl. Mech. Eng. 312, 492–508 (2016)

    Article  Google Scholar 

  20. Q. Yang, A. Kirshtein, Y. Ji, C. Liu, J. Shen, L.Q. Chen, A thermodynamically consistent phase-field model for viscous sintering. J. Am. Ceram. Soc. 102, 674–685 (2019)

    Article  CAS  Google Scholar 

  21. J. Hötzer, M. Seiz, M. Kellner, W. Rheinheimer, B. Nestler, Phase-field simulation of solid state sintering. Acta Mater. 164, 184–195 (2019)

    Article  CAS  Google Scholar 

  22. Y. Yang, T.D. Oyedeji, P. Kühn, B.-X. Xu, Investigation on temperature-gradient-driven effects in unconventional sintering via non-isothermal phase-field simulation. Scr. Mater. 186, 152–157 (2020)

    Article  CAS  Google Scholar 

  23. S. Biswas, D. Schwen, J. Singh, V. Tomar, A study of the evolution of microstructure and consolidation kinetics during sintering using a phase field modeling based approach. Extreme Mech. Lett. 7, 78–89 (2016)

    Article  Google Scholar 

  24. B. Dzepina, D. Balint, D. Dini, A phase field model of pressure-assisted sintering. J. Eur. Ceram. Soc. 39, 173–182 (2019)

    Article  CAS  Google Scholar 

  25. D.N. Bhate, A. Kumar, A.F. Bower, Diffuse interface model for electromigration and stress voiding. J. Appl. Phys 87, 1712–1721 (2000)

    Article  CAS  Google Scholar 

  26. Z.J. Morgan, Y.M. Jin, Phase field modeling of pore electromigration in anisotropic conducting polycrystals. Comput. Mater. Sci. 172, 109362 (2020)

    Article  CAS  Google Scholar 

  27. A. Mukherjee, K. Ankit, R. Mukherjee, B. Nestler, Phase-field modeling of grain-boundary grooving under electromigration. J. Electron. Mater. 45, 6233–6246 (2016)

    Article  CAS  Google Scholar 

  28. S. Chakraborty, P. Kumar, A. Choudhury, Phase-field modeling of grain-boundary grooving and migration under electric current and thermal gradient. Acta Mater. 153, 377–390 (2018)

    Article  CAS  Google Scholar 

  29. M. Park, S. Gibbons, R. Arróyave, Phase-field simulations of intermetallic compound evolution in Cu/Sn solder joints under electromigration. Acta Mater. 61, 7142–7154 (2013)

    Article  CAS  Google Scholar 

  30. A. Kunwar, Y.A. Coutinho, J. Hektor, H. Ma, N. Moelans, Integration of machine learning with phase field method to model the electromigration induced Cu6Sn5 IMC growth at anode side Cu/Sn interface. J. Mater. Sci. Technol. 59, 203–219 (2020)

    Article  Google Scholar 

  31. S.-J.L. Kang, Sintering: Densification, Grain Growth and Microstructure (Elsevier, Amsterdam, 2004)

    Google Scholar 

  32. M. Asoro, P. Ferreira, D. Kovar, In situ transmission electron microscopy and scanning transmission electron microscopy studies of sintering of Ag and Pt nanoparticles. Acta Mater. 81, 173–183 (2014)

    Article  CAS  Google Scholar 

  33. H. Alarifi, A. Hu, M. Yavuz, Y.N. Zhou, Silver nanoparticle paste for low-temperature bonding of copper. J. Electron. Mater. 40, 1394–1402 (2011)

    Article  CAS  Google Scholar 

  34. K. Ahmed, C. Yablinsky, A. Schulte, T. Allen, A. El-Azab, Phase field modeling of the effect of porosity on grain growth kinetics in polycrystalline ceramics. Model. Simul. Mater. Sci. Eng. 21, 065005 (2013)

    Article  CAS  Google Scholar 

  35. M.A. Asoro, D. Kovar, P.J. Ferreira, Effect of surface carbon coating on sintering of silver nanoparticles: in situ TEM observations. Chem. Commun. (Camb.) 50, 4835–4838 (2014)

    Article  CAS  Google Scholar 

  36. J. Donnet, M. Brendle, T. Dhami, O. Bahl, Plasma treatment effect on the surface energy of carbon and carbon fibers. Carbon 24, 757–770 (1986)

    Article  CAS  Google Scholar 

  37. B. Medasani, Y.H. Park, I. Vasiliev, Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles. Phys. Rev. B 75, 235436 (2007)

    Article  CAS  Google Scholar 

  38. M.N. Rahaman, Ceramic Processing and Sintering (Materials Engineering, Boca Raton, 2003)

    Google Scholar 

  39. C. Manière, E. Saccardo, G. Lee, J. McKittrick, A. Molinari, E.A. Olevsky, Swelling negation during sintering of sterling silver: an experimental and theoretical approach. Results Phys. 11, 79–84 (2018)

    Article  Google Scholar 

  40. P.S. Ho, Motion of inclusion induced by a direct current and a temperature gradient. J. Appl. Phys. 41, 64–68 (1970)

    Article  CAS  Google Scholar 

  41. W. Yang, W. Wang, Z. Suo, Cavity and dislocation instability due to electric current. J. Mech. Phys. Solids 42, 897–911 (1994)

    Article  CAS  Google Scholar 

  42. N. Moelans, B. Blanpain, P. Wollants, An introduction to phase-field modeling of microstructure evolution. Calphad 32, 268–294 (2008)

    Article  CAS  Google Scholar 

  43. Z. Suo, Motions of microscopic surfaces. Adv. Appl. Mech. 33, 193–294 (1997)

    Article  Google Scholar 

  44. F. Wakai, M. Yoshida, Y. Shinoda, T. Akatsu, Coarsening and grain growth in sintering of two particles of different sizes. Acta Mater. 53, 1361–1371 (2005)

    Article  CAS  Google Scholar 

  45. R. German, Sintering of Advanced Materials (Elsevier, Amsterdam, 2010), pp. 3–32

    Book  Google Scholar 

  46. R. Dannenberg, E. Stach, J.R. Groza, B.J. Dresser, TEM annealing study of normal grain growth in silver thin films. Thin Solid Films 379, 133–138 (2000)

    Article  CAS  Google Scholar 

  47. S.-B. Liang, C.-B. Ke, C. Wei, J.-Q. Huang, M.-B. Zhou, X.-P. Zhang, Microstructural evolution and change in macroscopic physical properties of microscale flip chip Cu/Sn58Bi/Cu joints under the coupling effect of electric current stressing and elastic stress. J. Mater. Res. 34, 2775–2788 (2019)

    Article  CAS  Google Scholar 

  48. S. Noh, C. Choe, C. Chen, H. Zhang, K. Suganuma, Printed wire interconnection using Ag sinter paste for wide band gap power semiconductors. J. Mater. Sci. Mater. Electron. 29, 15223–15232 (2018)

    Article  CAS  Google Scholar 

  49. M. Rovitto, H. Ceric, Electromigration induced voiding and resistance change in three-dimensional copper through silicon vias. In 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), pp 550–556 (2016)

  50. H. Ceric, S. Selberherr, H. Zahedmanesh, R. de Orio, K. Croes, Modeling methods for analysis of electromigration degradation in nano-interconnects. ECS J. Solid State Sci. Technol. 10, 035003 (2021)

    Article  CAS  Google Scholar 

  51. J.E. Guyer, W.J. Boettinger, J.A. Warren, G.B. McFadden, Phase field modeling of electrochemistry. I. Equilibrium. Phys Rev E 69, 021603 (2004)

    Article  CAS  Google Scholar 

  52. P. Zhou, W.C. Johnson, A diffuse interface model of intermediate-phase growth under the influence of electromigration. J. Electron. Mater. 40, 1867–1875 (2011)

    Article  CAS  Google Scholar 

  53. F. Abdeljawad, D.S. Bolintineanu, A. Cook, H. Brown-Shaklee, C. DiAntonio, D. Kammler, A. Roach, Sintering processes in direct ink write additive manufacturing: a mesoscopic modeling approach. Acta Mater. 169, 60–75 (2019)

    Article  CAS  Google Scholar 

  54. N. Moelans, B. Blanpain, P. Wollants, Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems. Phys. Rev. B 78, 024113 (2008)

    Article  CAS  Google Scholar 

  55. M.R. Tonks, Y. Zhang, A. Butterfield, X.-M. Bai, Development of a grain boundary pinning model that considers particle size distribution using the phase field method. Model. Simul. Mater. Sci. Eng. 23, 045009 (2015)

    Article  Google Scholar 

  56. L. Du, S. Yang, X. Zhu, J. Jiang, Q. Hui, H. Du, Pore deformation and grain boundary migration during sintering in porous materials: a phase-field approach. J. Mater. Sci. 53, 9567–9577 (2018)

    Article  CAS  Google Scholar 

  57. D. Choudhuri, L. Blake, Particle curvature effects on microstructural evolution during solid-state sintering: phenomenological insights from phase-field simulations. J. Mater. Sci. 56, 7474–7493 (2021)

    Article  CAS  Google Scholar 

  58. D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys (Revised Reprint) (CRC Press, Boca Raton, 2009)

    Book  Google Scholar 

  59. J. Deng, A phase field model of sintering with direction-dependent diffusion. Mater Trans 53, 385–389 (2012)

    Article  CAS  Google Scholar 

  60. A.M. Boies, J.T. Roberts, S.L. Girshick, B. Zhang, T. Nakamura, A. Mochizuki, SiO2 coating of silver nanoparticles by photoinduced chemical vapor deposition. Nanotechnology 20, 295604 (2009)

    Article  CAS  Google Scholar 

  61. M. Inman, H. Tipler, Interfacial energy and composition in metals and alloys. Metall. Rev. 8, 105–166 (1963)

    CAS  Google Scholar 

  62. R. Pareja, Migration kinetics of (001) twist grain boundaries in silver bicrystalline films. Int. J. Mater. Res. 72, 198–202 (1981)

    Article  CAS  Google Scholar 

  63. S. Rothman, N. Peterson, J. Robinson, Isotope effect for self-diffusion in single crystals of silver. Phys. Status Solidi B 39, 635–645 (1970)

    Article  CAS  Google Scholar 

  64. G. Rhead, Surface self-diffusion and faceting on silver. Acta Metall. 11, 1035–1042 (1963)

    Article  CAS  Google Scholar 

  65. A.A. Wereszczak, D.J. Vuono, H. Wang, M.K. Ferber, Z. Liang, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States) (2012)

  66. H. Patil, H. Huntington, Electromigration and associated void formation in silver. J Phys Chem Solids 31, 463–474 (1970)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 51205135) and Natural Science Foundation of Guangdong Province (No. 2022A1515011511). H. Jiang wishes to acknowledge the financial support from China Scholarship Council (201806150013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuibao Liang or Changbo Ke.

Ethics declarations

Conflict of interest

The authors declare no possible conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Liang, S., Wei, C. et al. Phase field modelling of the electromigration behaviour in sintered silver. Journal of Materials Research 37, 2322–2334 (2022). https://doi.org/10.1557/s43578-022-00635-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00635-w

Keywords

Navigation