Skip to main content
Log in

Effects of initial microstructure on the aging behavior and subsequent mechanical properties of Ti–Nb–O titanium alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Metastable β-type Ti–38Nb–0.2O alloy was subjected to cold rolling (CR) and solution treatment (ST), and the effects of initial microstructure on the aging behavior and subsequent mechanical properties were investigated. High density of dislocations and grain refinement were introduced by CR, which suppressed the ω phase and promoted the α phase in the subsequent aging process. Upon aging at 573 K, the CR specimen consisted of α + β phase and high density of dislocations, while the ST specimen showed homogeneous precipitation of ω phase. Upon aging at 773 K, the CR specimen exhibited ultrafine equiaxed α phase without obvious β grain boundary, while the ST specimen contained acicular α precipitates nonuniformly distributed in the internal grain and grain boundary, and precipitate-free zone near grain boundaries were observed. The different initial microstructures led to large difference in strength and Young’s modulus between the aged specimens.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. D. Banerjee, J.C. Williams, Perspectives on titanium science and technology. Acta Mater. 61(3), 844 (2013)

    Article  CAS  Google Scholar 

  2. M. Bonisch, M. Calin, J. van Humbeeck, W. Skrotzki, J. Eckert, Factors influencing the elastic moduli, reversible strains and hysteresis loops in martensitic Ti–Nb alloys. Mater. Sci. Eng. C Mater. Biol. Appl. 48, 511 (2015)

    Article  CAS  Google Scholar 

  3. J.Y. Zhang, G.F. Chen, Y.Y. Fu, Y. Fan, Z. Chen, J. Xu, H. Chang, Z.H. Zhang, J. Zhou, Z. Sun, B.L. Shen, F. Sun, Strengthening strain-transformable β Ti-alloy via multi-phase nanostructuration. J. Alloy. Compd. 799, 389 (2019)

    Article  CAS  Google Scholar 

  4. F. Sun, Y.L. Hao, J.Y. Zhang, F. Prima, Contribution of nano-sized lamellar microstructure on recoverable strain of Ti–24Nb–4Zr–7.9Sn titanium alloy. Mater. Sci. Eng. A 528(25–26), 7811 (2011)

    Article  CAS  Google Scholar 

  5. W. Chen, S. Cao, W. Kou, J. Zhang, Y. Wang, Y. Zha, Y. Pan, Q. Hu, Q. Sun, J. Sun, Origin of the ductile-to-brittle transition of metastable β-titanium alloys: self-hardening of ω-precipitates. Acta Mater. 170, 187 (2019)

    Article  CAS  Google Scholar 

  6. J.W. Foltz, B. Welk, P.C. Collins, H.L. Fraser, J.C. Williams, Formation of grain boundary α in β Ti alloys: its role in deformation and fracture behavior of these alloys. Metall. Mater. Trans. A 42(3), 645 (2010)

    Article  CAS  Google Scholar 

  7. Y. Fu, W. Xiao, J. Wang, L. Ren, X. Zhao, C. Ma, A novel strategy for developing α + β dual-phase titanium alloys with low young’s modulus and high yield strength. J. Mater. Sci. Technol. 76, 122–128 (2020)

    Article  CAS  Google Scholar 

  8. E.M. Hildyard, L.D. Connor, L.R. Owen, D. Rugg, N. Martin, H.J. Stone, N.G. Jones, The influence of microstructural condition on the phase transformations in Ti–24Nb (at.%). Acta Mater. 199, 129 (2020)

    Article  CAS  Google Scholar 

  9. H. Wang, S.-W. Xin, Y.-Q. Zhao, W. Zhou, W.-D. Zeng, Forging–microstructure–tensile properties correlation in a new near β high-strength titanium alloy. Rare Met. 40(8), 2109 (2020)

    Article  CAS  Google Scholar 

  10. D.L. Moffat, D.C. Larbalestier, The compctition between the alpha and omega phases in aged Ti–Nb alloys. Metall. Trans. A 19(7), 1687 (1988)

    Article  Google Scholar 

  11. A. Berg, J. Kiese, L. Wagner, Microstructural gradients in Ti–3Al–8V–6Cr–4Zr–4Mo for excellent HCF strength and toughness. Mater. Sci. Eng. A 243(1), 146 (1998)

    Article  Google Scholar 

  12. B. Jiang, S. Emura, K. Tsuchiya, Microstructural evolution and its effect on the mechanical behavior of Ti–5Al–5Mo–5V–3Cr alloy during aging. Mater. Sci. Eng. A 731, 239 (2018)

    Article  CAS  Google Scholar 

  13. S. Guo, Q. Meng, G. Liao, L. Hu, X. Zhao, Microstructural evolution and mechanical behavior of metastable β-type Ti–25Nb–2Mo–4Sn alloy with high strength and low modulus. Prog. Nat. Sci. Mater. Int. 23(2), 174 (2013)

    Article  Google Scholar 

  14. S. Guo, Q. Meng, L. Hu, G. Liao, X. Zhao, H. Xu, Suppression of isothermal ω phase by dislocation tangles and grain boundaries in metastable β-type titanium alloys. J. Alloy. Compd. 550, 35 (2013)

    Article  CAS  Google Scholar 

  15. S. Guo, Z. Bao, Q. Meng, L. Hu, X. Zhao, A novel metastable Ti–25Nb–2Mo–4Sn alloy with high strength and low young’s modulus. Metall. Mater. Trans. A 43(10), 3447 (2012)

    Article  CAS  Google Scholar 

  16. M. Yan, W. Xu, M.S. Dargusch, H.P. Tang, M. Brandt, M. Qian, Review of effect of oxygen on room temperature ductility of titanium and titanium alloys. Powder Metall. 57(4), 251 (2014)

    Article  CAS  Google Scholar 

  17. J.I. Kim, H.Y. Kim, H. Hosoda, S. Miyazaki, Shape memory behavior of Ti–22Nb–(0.5–2.0) O (at%) biomedical alloys. Mater. Trans. 46(4), 852 (2005)

    Article  CAS  Google Scholar 

  18. T. Saito, T. Furuta, J.H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, T. Sakuma, Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300(5618), 464 (2003)

    Article  CAS  Google Scholar 

  19. Y.L. Hao, Z.B. Zhang, S.J. Li, R. Yang, Microstructure and mechanical behavior of a Ti–24Nb–4Zr–8Sn alloy processed by warm swaging and warm rolling. Acta Mater. 60(5), 2169 (2012)

    Article  CAS  Google Scholar 

  20. S. Hanada, N. Masahashi, T.K. Jung, Effect of stress-induced α″ martensite on Young’s modulus of β Ti–33.6Nb–4Sn alloy. Mater. Sci. Eng. A 588, 403 (2013)

    Article  CAS  Google Scholar 

  21. C.M. Liu, H.M. Wang, X.J. Tian, H.B. Tang, Subtransus triplex heat treatment of laser melting deposited Ti–5Al–5Mo–5V–1Cr–1Fe near β titanium alloy. Mater. Sci. Eng. A 590, 30 (2014)

    Article  CAS  Google Scholar 

  22. J.I. Qazi, V. Tsakiris, B. Marquardt, H.J. Rack, Effect of aging treatments on the tensile properties of Ti–35Nb–7Zr–5Ta–(00.6–0.7)O alloys. J. ASTM Int. 2(8), 12780 (2005)

    Article  Google Scholar 

  23. J.I. Kim, H.Y. Kim, T. Inamura, H. Hosoda, S. Miyazaki, Effect of annealing temperature on microstructure and shape memory characteristics of Ti–22Nb–6Zr(at%) biomedical alloy. Mater. Trans. 47(3), 505 (2006)

    Article  Google Scholar 

  24. W.-T. Qu, H. Gong, J. Wang, Y.-S. Nie, Y. Li, Martensitic transformation, shape memory effect and superelasticity of Ti–xZr–(30–x)Nb–4Ta alloys. Rare Met. 38(10), 965 (2019)

    Article  CAS  Google Scholar 

  25. Q. Meng, S. Guo, Q. Liu, L. Hu, X. Zhao, A β-type TiNbZr alloy with low modulus and high strength for biomedical applications. Prog. Nat. Sci. Mater. Int. 24(2), 157 (2014)

    Article  CAS  Google Scholar 

  26. M. Tahara, H.Y. Kim, T. Inamura, H. Hosoda, S. Miyazaki, Role of interstitial atoms in the microstructure and non-linear elastic deformation behavior of Ti–Nb alloy. J. Alloy. Compd. 577, S404 (2013)

    Article  CAS  Google Scholar 

  27. Y.L. Hao, S.J. Li, S.Y. Sun, C.Y. Zheng, Q.M. Hu, R. Yang, Super-elastic titanium alloy with unstable plastic deformation. Appl. Phys. Lett. 87(9), 091906 (2005)

    Article  CAS  Google Scholar 

  28. J.P. Cui, Y.L. Hao, S.J. Li, M.L. Sui, D.X. Li, R. Yang, Reversible movement of homogenously nucleated dislocations in a beta-titanium alloy. Phys Rev Lett. 102(4), 045503 (2009)

    Article  CAS  Google Scholar 

  29. T. Furuta, S. Kuramoto, J. Hwang, K. Nishino, T. Saito, Elastic deformation behavior of multi-functional Ti–Nb–Ta–Zr–O Alloys. Mater. Trans. 46(12), 3001 (2005)

    Article  CAS  Google Scholar 

  30. S. Nag, R. Banerjee, R. Srinivasan, J.Y. Hwang, M. Harper, H.L. Fraser, ω-Assisted nucleation and growth of α precipitates in the Ti–5Al–5Mo–5V–3Cr–0.5Fe β titanium alloy. Acta Mater. 57(7), 2136 (2009)

    Article  CAS  Google Scholar 

  31. L.M. Hsiung, D.H. Lassila, Shock-induced deformation twinning and omega transformation in tantalum and tantalum–tungsten alloys. Acta Mater. 48(20), 4851 (2000)

    Article  CAS  Google Scholar 

  32. T. Richeton, J. Weiss, F. Louchet, Dislocation avalanches: role of temperature, grain size and strain hardening. Acta Mater. 53(16), 4463 (2005)

    Article  CAS  Google Scholar 

  33. B. Jiang, S. Emura, K. Tsuchiya, Formation of equiaxed α phase in Ti–5Al–5Mo–5V–3Cr alloy deformed by high-pressure torsion. J. Alloy. Compd. 738, 283 (2018)

    Article  CAS  Google Scholar 

  34. S. Zherebtsov, G. Salishchev, S. Lee Semiatin, Loss of coherency of the alpha/beta interface boundary in titanium alloys during deformation. Philos. Mag. Lett. 90(12), 903 (2010)

    Article  CAS  Google Scholar 

  35. T. Furuhara, T. Makino, Y. Idei, H. Ishigaki, A. Takada, T. Maki, Morphology and crystallography of α precipitates in β Ti–Mo binary alloys. Mater. Trans. 39(1), 31 (1998)

    Article  CAS  Google Scholar 

  36. A. Zafari, K. Xia, Formation of equiaxed α during ageing in a severely deformed metastable β Ti alloy. Scripta Mater. 124, 151 (2016)

    Article  CAS  Google Scholar 

  37. K. Bartha, J. Stráský, A. Veverková, P. Barriobero-Vila, F. Lukáč, P. Doležal, P. Sedlák, V. Polyakova, I. Semenova, M. Janeček, Effect of the high-pressure torsion (HPT) and subsequent isothermal annealing on the phase transformation in biomedical Ti15Mo alloy. Metals 9(11), 1194 (2019)

    Article  CAS  Google Scholar 

  38. M. Ahmed, D. Wexler, G. Casillas, O.M. Ivasishin, E.V. Pereloma, The influence of β phase stability on deformation mode and compressive mechanical properties of Ti–10V–3Fe–3Al alloy. Acta Mater. 84, 124 (2015)

    Article  CAS  Google Scholar 

  39. S.A. Mantri, D. Choudhuri, T. Alam, V. Ageh, F. Sun, F. Prima, R. Banerjee, Change in the deformation mode resulting from beta-omega compositional partitioning in a Ti Mo alloy: room versus elevated temperature. Scripta Mater. 130, 69 (2017)

    Article  CAS  Google Scholar 

  40. M.J. Lai, T. Li, D. Raabe, ω phase acts as a switch between dislocation channeling and joint twinning- and transformation-induced plasticity in a metastable β titanium alloy. Acta Mater. 151, 67 (2018)

    Article  CAS  Google Scholar 

  41. A. Melander, P.Å. Persson, The strength of a precipitation hardened AlZnMg alloy. Acta Metall. 26(2), 267 (1978)

    Article  CAS  Google Scholar 

  42. J. Sun, Q. Yao, H. Xing, W.Y. Guo, Elastic properties of β, α′′ and ω metastable phases in Ti–Nb alloy from first-principles. J. Phys. Condens. Matter 19(48), 486215 (2007)

    Article  CAS  Google Scholar 

  43. J.M. Rosenberg, H.R. Piehler, Calculation of the Taylor factor and lattice rotations for bcc metals deforming by pencil glide. Metall. Trans. 2(1), 257 (1971)

    Article  CAS  Google Scholar 

  44. N. Chen, H. Kou, Z. Wu, F. Qiang, C. Wang, J. Li, J.M. Molina-Aldareguia, Stress-induced α″ martensitic phase transformation and martensitic twinning in a metastable β titanium alloy. J. Alloys Compd. 859, 157809 (2021)

    Article  CAS  Google Scholar 

  45. J. Dong, F. Li, C. Wang, Micromechanical behavior study of α phase with different morphologies of Ti–6Al–4V alloy by microindentation. Mater. Sci. Eng. A 580, 105 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding of the National Natural Science Foundation of China (NSFC, No. 51671012) and the National Natural Science Foundation of China (NSFC, No.52001018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlong Xiao.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xiao, W., Fu, Y. et al. Effects of initial microstructure on the aging behavior and subsequent mechanical properties of Ti–Nb–O titanium alloy. Journal of Materials Research 37, 2304–2313 (2022). https://doi.org/10.1557/s43578-022-00631-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00631-0

Keywords

Navigation