Skip to main content
Log in

Synthesis, characterization, and bioactivity evaluation of biphasic calcium phosphate nanopowder containing 5.0 mol% strontium, 0.6 mol% magnesium, and 0.2 mol% silicon for bone regeneration

Journal of Materials Research Aims and scope Submit manuscript

Cite this article

Abstract

Biphasic calcium phosphate (BCP) bioceramics have shown efficacy for bone repair because of their controllable degradation rate that can be modified by chemical composition and phase ratio. To develop a new BCP ceramic in this work, 5.0 Sr, 0.6 Mg, and 0.2 Si (all in mol%) triple-substituted BCP powder was synthesized and calcined at 550 to 750 °C. The obtained results confirmed the presence of substituted ions in the product and also showed that powder calcined at 650 °C consisted of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) nanoparticles with a weight ratio of ~ 60/40. The apatite layer with a rod-like morphology was formed on the surface of the sample fabricated from this powder after 28 days of soaking in SBF at ~ 37 °C. Also, the substituted ions showed positive effects on viability and the alkaline phosphatase activity of MG63 cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

Not applicable.

References

  1. M. Ebrahimi, M.G. Botelho, S.V. Dorozhkin, Biphasic calcium phosphates bioceramics (HA/TCP): Concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research. Mater. Sci. Eng. C 71, 1293–1312 (2017)

    Article  CAS  Google Scholar 

  2. S.E. Lobo, T. Livingston Arinzeh, Biphasic calcium phosphate ceramics for bone regeneration and tissue engineering applications. Materials 3(2), 815–826 (2010)

    Article  CAS  Google Scholar 

  3. I. Denry, L.T. Kuhn, Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dent. Mater. 32(1), 43–53 (2016)

    Article  CAS  Google Scholar 

  4. J.M. Bouler, P. Pilet, O. Gauthier, E. Verron, Biphasic calcium phosphate ceramics for bone reconstruction: a review of biological response. Acta Biomater. 53, 1–12 (2017)

    Article  CAS  Google Scholar 

  5. J. Lu, H. Yu, C. Chen, Biological properties of calcium phosphate biomaterials for bone repair: a review. RSC Adv. 8(4), 2015–2033 (2018)

    Article  CAS  Google Scholar 

  6. S. Sánchez-Salcedo, D. Arcos, M. Vallet-Regí, Upgrading calcium phosphate scaffolds for tissue engineering applications, in Key Engineering Materials, vol. 377, (Trans Tech Publications Ltd, New York, 2008), pp. 19–42

    Google Scholar 

  7. Y.M. Kong, H.E. Kim, H.W. Kim, Phase conversion of tricalcium phosphate into Ca-deficient apatite during sintering of hydroxyapatite–tricalcium phosphate biphasic ceramics. J. Biomed. Mater. Res. Part B 84(2), 334–339 (2008)

    Article  CAS  Google Scholar 

  8. J.S. Cho, C.P. Chung, S.H. Rhee, Bioactivity and osteoconductivity of biphasic calcium phosphates. Bioceram. Dev. Appl. 1, 1–3 (2011)

    Article  CAS  Google Scholar 

  9. C. Shuai, P. Li, J. Liu, S. Peng, Optimization of TCP/HAP ratio for better properties of calcium phosphate scaffold via selective laser sintering. Mater. Charact. 77, 23–31 (2013)

    Article  CAS  Google Scholar 

  10. A.N. Natasha, R. Singh, M.H. Bin Abd Shukor, T.C. Young, J. Purbolaksono, I. Sopyan, R. Toulouei, Synthesis and properties of biphasic calcium phosphate prepared by different methods, in Advanced Materials Research, vol. 970, (Springer, Berlin, 2014), pp. 20–25

    Google Scholar 

  11. P. Moghimian, A. Najafi, S. Afshar, J. Javadpour, Effect of low temperature on formation mechanism of calcium phosphate nano powder via precipitation method. Adv. Powder Technol. 23(6), 744–751 (2012)

    Article  CAS  Google Scholar 

  12. F. Bakan, A systematic study of the effect of pH on the initialization of Ca-deficient hydroxyapatite to β-TCP nanoparticles. Materials 12(3), 354 (2019)

    Article  CAS  Google Scholar 

  13. S. Bose, G. Fielding, S. Tarafder, A. Bandyopadhyay, Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends Biotechnol. 31(10), 594–605 (2013)

    Article  CAS  Google Scholar 

  14. A. Laskus, J. Kolmas, Ionic substitutions in non-apatitic calcium phosphates. Int. J. Mol. Sci. 18(12), 2542 (2017)

    Article  CAS  Google Scholar 

  15. S. Basu, B. Basu, Doped biphasic calcium phosphate: synthesis and structure. J. Asian Ceram. Soc. 7(3), 265–283 (2019)

    Article  Google Scholar 

  16. S. Basu, B. Basu, Unravelling doped biphasic calcium phosphate: synthesis to application. ACS Appl. Bio Mater. 2(12), 5263–5297 (2019)

    Article  CAS  Google Scholar 

  17. M. Safarzadeh, S. Ramesh, C.Y. Tan, H. Chandran, A.F.M. Noor, S. Krishnasamy, U.J. Alengaram, Effect of multi-ions doping on the properties of carbonated hydroxyapatite bioceramic. Ceram. Int. 45(3), 3473–3477 (2019)

    Article  CAS  Google Scholar 

  18. L. Obadia, P. Deniard, B. Alonso, T. Rouillon, S. Jobic, J. Guicheux, M. Julien, D. Massiot, B. Bujoli, J.M. Bouler, Effect of sodium doping in β-tricalcium phosphate on its structure and properties. Chem. Mater. 18(6), 1425–1433 (2006)

    Article  CAS  Google Scholar 

  19. I.S. Byun, S.K. Sarkar, M. Anirban Jyoti, Y.K. Min, H.S. Seo, B.T. Lee, H.Y. Song, Initial biocompatibility and enhanced osteoblast response of Si doping in a porous BCP bone graft substitute. J. Mater. Sci. - Mater. Med. 21(6), 1937–1947 (2010)

    Article  CAS  Google Scholar 

  20. P. Kanchana, C. Sekar, Influence of strontium on the synthesis and surface properties of biphasic calcium phosphate (BCP) bioceramics. J. Appl. Biomater. Biomech. 8(3), 153–158 (2010)

    CAS  Google Scholar 

  21. G.D. Webler, A.C. Correia, E. Barreto, E.J. Fonseca, Mg-doped biphasic calcium phosphate by a solid state reaction route: characterization and evaluation of cytotoxicity. Mater. Chem. Phys. 162, 177–181 (2015)

    Article  CAS  Google Scholar 

  22. C. Wu, Z. Chen, D. Yi, J. Chang, Y. Xiao, Multidirectional effects of Sr-, Mg-, and Si-containing bioceramic coatings with high bonding strength on inflammation, osteoclastogenesis, and osteogenesis. ACS Appl. Mater. Interfaces. 6(6), 4264–4276 (2014)

    Article  CAS  Google Scholar 

  23. L. He, G. Dong, C. Deng, Effects of strontium substitution on the phase transformation and crystal structure of calcium phosphate derived by chemical precipitation. Ceram. Int. 42(10), 11918–11923 (2016)

    Article  CAS  Google Scholar 

  24. G. Dong, Y. Zheng, L. He, G. Wu, C. Deng, The effect of silicon doping on the transformation of amorphous calcium phosphate to silicon-substituted α-tricalcium phosphate by heat treatment. Ceram. Int. 42(1), 883–890 (2016)

    Article  CAS  Google Scholar 

  25. C.F. Marques, A.C. Matos, I.A. Ribeiro, L.M. Gonçalves, A. Bettencourt, J.M. Ferreira, Insights on the properties of levofloxacin-adsorbed Sr-and Mg-doped calcium phosphate powders. J. Mater. Sci. - Mater. Med. 27(7), 1–12 (2016)

    Article  CAS  Google Scholar 

  26. V.H. Arkin, U. Narendrakumar, H. Madhyastha, I. Manjubala, Characterization and in vitro evaluations of injectable calcium phosphate cement doped with magnesium and strontium. ACS Omega 6(4), 2477–2486 (2021)

    Article  CAS  Google Scholar 

  27. Mata, N.A., Arango-Ospina, M., Velasquez, P., Murciano, A., Piedad, N. and Boccaccini, A.R., 2021. Effect of Sr, Mg and Fe substitution on the physico-chemical and biological properties of SiCaP multilayer scaffolds. Boletín de la Sociedad Española de Cerámica y Vidrio.

  28. I. Sopyan, S. Ramesh, N.A. Nawawi, A. Tampieri, S. Sprio, Effects of manganese doping on properties of sol–gel derived biphasic calcium phosphate ceramics. Ceram. Int. 37(8), 3703–3715 (2011)

    Article  CAS  Google Scholar 

  29. T. Hooshmand, A. Abrishamchian, F. Najafi, M. Mohammadi, H. Najafi, M. Tahriri, Development of sol-gel-derived multi-wall carbon nanotube/hydroxyapatite nanocomposite powders for bone substitution. J. Compos. Mater. 48(4), 483–489 (2014)

    Article  CAS  Google Scholar 

  30. M. Kheradmandfard, K. Mahdavi, A.Z. Kharazi, S.F. Kashani-Bozorg, D.E. Kim, In vitro study of a novel multi-substituted hydroxyapatite nanopowder synthesized by an ultra-fast, efficient and green microwave-assisted method. Mater. Sci. Eng., C 117, 111310 (2020)

    Article  CAS  Google Scholar 

  31. A.H. Choi, B. Ben-Nissan, R.C. Conway, I.J. Macha, Advances in calcium phosphate nanocoatings and nanocomposites, in Advances in calcium phosphate biomaterials. (Springer, Berlin, 2014), pp. 485–509

    Chapter  Google Scholar 

  32. S. Basu, A. Ghosh, A. Barui, B. Basu, (Fe/Sr) co-doped biphasic calcium phosphate with tailored osteoblast cell functionality. ACS Biomater. Sci. Eng. 4(3), 857–871 (2018)

    Article  CAS  Google Scholar 

  33. P. Kanchana, C. Sekar, Effect of magnesium on the mechanical and bioactive properties of biphasic calcium phosphate. J. Min. Mater. Charact. Eng. 11(10), 982 (2012)

    Google Scholar 

  34. B. Mohapatra, T.R. Rautray, Strontium-substituted biphasic calcium phosphate scaffold for orthopedic applications. J. Korean Ceram. Soc. 57(4), 392–400 (2020)

    Article  CAS  Google Scholar 

  35. A.M. Pietak, J.W. Reid, M.J. Stott, M. Sayer, Silicon substitution in the calcium phosphate bioceramics. Biomaterials 28(28), 4023–4032 (2007)

    Article  CAS  Google Scholar 

  36. S. Gomes, G. Renaudin, E. Jallot, J.M. Nedelec, Structural characterization and biological fluid interaction of sol−gel-derived Mg-substituted biphasic calcium phosphate ceramics. ACS Appl. Mater. Interfaces. 1(2), 505–513 (2009)

    Article  CAS  Google Scholar 

  37. M. Roy, S. Bose, Osteoclastogenesis and osteoclastic resorption of tricalcium phosphate: effect of strontium and magnesium doping. J. Biomed. Mater. Res. Part A 100(9), 2450–2461 (2012)

    Google Scholar 

  38. A. Bandyopadhyay, J. Petersen, G. Fielding, S. Banerjee, S. Bose, ZnO, SiO2, and SrO doping in resorbable tricalcium phosphates: Influence on strength degradation, mechanical properties, and in vitro bone–cell material interactions. J. Biomed. Mater. Res. B Appl. Biomater. 100(8), 2203–2212 (2012)

    Article  CAS  Google Scholar 

  39. C.F. Marques, A. Lemos, S.I. Vieira, O.D.C. e Silva, J.M.F. Ferreira, Antibiotic-loaded Sr-doped porous calcium phosphate granules as multifunctional bone grafts. Ceram. Int. 42(2), 2706–2716 (2016)

    Article  CAS  Google Scholar 

  40. C.F. Marques, S. Olhero, J.C.C. Abrantes, A. Marote, S. Ferreira, S.I. Vieira, J.M. Ferreira, Biocompatibility and antimicrobial activity of biphasic calcium phosphate powders doped with metal ions for regenerative medicine. Ceram. Int. 43(17), 15719–15728 (2017)

    Article  CAS  Google Scholar 

  41. T. Ahmadi, A. Monshi, V. Mortazavi, M.H. Fathi, S. Sharifi, B.H. Beni, A.M. Abed, M. Kheradmandfard, A. Sharifnabi, Synthesis and dissolution behavior of nanosized silicon and magnesium co-doped fluorapatite obtained by high energy ball milling. Ceram. Int. 40(6), 8341–8349 (2014)

    Article  CAS  Google Scholar 

  42. M. Shaltooki, G. Dini, M. Mehdikhani, Fabrication of chitosan-coated porous polycaprolactone/strontium-substituted bioactive glass nanocomposite scaffold for bone tissue engineering. Mater. Sci. Eng., C 105, 110138 (2019)

    Article  CAS  Google Scholar 

  43. S. Kannan, S.I. Vieira, S.M. Olhero, S. Pina, O.D.C. e Silva, J.M.F. Ferreira, Synthesis, mechanical and biological characterization of ionic doped carbonated hydroxyapatite/β-tricalcium phosphate mixtures. Acta Biomater. 7(4), 1835–1843 (2011)

    Article  CAS  Google Scholar 

  44. S. Tarafder, N.M. Davies, A. Bandyopadhyay, S. Bose, 3D printed tricalcium phosphate bone tissue engineering scaffolds: effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model. Biomaterials Science 1(12), 1250–1259 (2013)

    Article  CAS  Google Scholar 

  45. C. Rey, O. Marsan, C. Combes, C. Drouet, D. Grossin, S. Sarda, Characterization of calcium phosphates using vibrational spectroscopies, in Advances in calcium phosphate biomaterials. (Springer, Berlin, 2014), pp. 229–266

    Chapter  Google Scholar 

  46. L. Lutterotti, D. Chateigner, S. Ferrari, J. Ricote, Texture, residual stress and structural analysis of thin films using a combined X-ray analysis. Thin Solid Films 450(1), 34–41 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the University of Isfahan (UI), Iran.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghasem Dini.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Human and animal rights

No animals/humans were used for studies that are the basis of this research.

Consent for publication

Not applicable.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, M., Dini, G., Afshar, M. et al. Synthesis, characterization, and bioactivity evaluation of biphasic calcium phosphate nanopowder containing 5.0 mol% strontium, 0.6 mol% magnesium, and 0.2 mol% silicon for bone regeneration. Journal of Materials Research 37, 1916–1928 (2022). https://doi.org/10.1557/s43578-022-00604-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00604-3

Keywords

Navigation