Skip to main content

Advertisement

Log in

Theoretical studies of the thermodynamic and mechanical properties of Mg–Pt system. An insight into phase equilibria

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The Mg–Pt system is considered as a promising hydrogen storage material. Surprisingly, its phase diagram is unknown hence application of this alloy very limited due to undetermined phases stabilities. In this work ab initio calculations were utilized to determine constant pressure heat capacities and Gibbs energy changes in the temperature range between 0 and 1000 K, and mechanical properties. As a result of this calculation, a first, rough phase diagram of the Mg–Pt system was proposed. Moreover, a crystal structure for the MgPt phase was refined based on the mechanical and dynamical stability. The formation free energy changes determined for phases of the Mg–Pt system showed that the MgPt phase exhibited the most negative value. The elastic stiffness matrix elements Cij were determined, as were mechanical properties such as Young’s, bulk, shear moduli, Vicker’s hardness, Poisson’s ratio or the Debye temperatures of intermetallic phases from the Mg–Pt system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

The manuscript has data included as Supplementary Material.

References

  1. C. Lu, Y. Ma, F. Li, H. Zhu, X. Zeng, W. Ding, T. Deng, J. Wu, J. Zou, Visualization of fast ‘hydrogen pump’ in core–shell nanostructure Mg@Pt through hydrogen-stabilized Mg3Pt. J. Mater. Chem. A 7, 14629–14637 (2019)

    Article  CAS  Google Scholar 

  2. H. Imamura, M. Nakamure, Hydriding properties of Mg-based hydrogen storage materials prepared chemically from a homogeneous phase. Z. Phys. Chem. 183, 157–162 (1994)

    Article  CAS  Google Scholar 

  3. A.A. Nayeb-Hashemi, J.B. Clark, The Mg–Pt (magnesium–platinum) system. Bull. Alloy Phase Diagr. 6, 533–534 (1985)

    Article  CAS  Google Scholar 

  4. K.T. Jacob, K.P. Abraham, S. Ramachandran, Gibbs energies of formation of intermetallic phases in the system Pt–Mg, Pt–Ca, and Pt–Ba and some applications. Metall. Trans. B 221B, 521–527 (1990)

    Article  Google Scholar 

  5. W. Gierlotka, A. Dębski, S. Terlicka, W. Gąsior, M. Pęska, M. Polański, I.-T. Lin, Insight into phase stability in the Mg–Pt system. The ab initio calculations. J. Phase Equilib. Diffus. 42, 102–106 (2021)

    Article  CAS  Google Scholar 

  6. W.R. Hodgkinson, R. Waring, A.P.H. Desborough, Some experiments to obtain, if possible, definite alloys of Pt and Pd with Ca, Zn, and Mg. Chem. News 80, 185 (1899)

    CAS  Google Scholar 

  7. AFLOW—Automatic FLOW for Materials Design. aflow.org. Accessed 20 March 2021

  8. Materials Project. www.materialsproject.org. Accessed 10 Feb 2020

  9. R. Ferro, G. Rambaldi, Research on the alloys of noble metals with the more electropositive elements; III—micrographics and X-ray examination of some magnesium–platinum alloys. J. Less Common Met. 2, 383–391 (1960)

    Article  CAS  Google Scholar 

  10. H.H. Stadelmaier, W.K. Hardy, Ternary alloys of C-Pd and C–Pt base with Mg, Al, Zn, Ga, Ge, Cd, In, Sn, Hg, Tl, and Pb (in German). Z. Metallkd. 52, 391–396 (1961)

    Google Scholar 

  11. W. Bronger, W. Klemm, Preparation of alloys of platinum with non-noble metals. Z. Anorg. Chem. 319, 58–81 (1963)

    Article  Google Scholar 

  12. S. Terlicka, A. Dębski, W. Gąsior, W. Gierlotka, M. Pęska, M. Polański, Thermodynamic properties of liquid Mg–Pt alloys determined by the calorimetric method. J. Mol. Liq. 317, 113976 (2020)

    Article  CAS  Google Scholar 

  13. N. Takeichi, K. Tanaka, H. Tanaka, N. Kuriyama, T.T.M. Ueda, H. Miyamura, S. Kikuchi, Hydrogen storage properties, metallographic structures and phase transformations of Mg-based alloys prepared by super lamination technique. MRS Online Proc. Libr. 1128, 1128-U01-04 (2011)

    Article  Google Scholar 

  14. J.-T. Eisheh, PhD Dissertation, Chrisian-Albrechts-Universitat, Kiel, 2006

  15. F. Mouhat, F.X. Coudet, Necessary and sufficient elastic stability condition in various crystal systems. Phys. Rev. B 90, 224104 (2014)

    Article  Google Scholar 

  16. F.I. Mopsik, The quasi-harmonic approximation and generalized Gruneisen equation of state. J. Res. Natl Bur. Stand. A 77A, 407–409 (1973)

    Article  Google Scholar 

  17. A.C. MacLeaod, Enthalpy and derived thermodynamic functions of platinum and a platinum + rhodium alloy from 400 to 1700 K. J. Chem. Thermodyn. 4(3), 391–399 (1972)

    Article  Google Scholar 

  18. H. Yokokawa, Y. Takahashi, Laser-flash calorimetry II. Heat capacity of platinum from 80 to 1000 K and its revised thermodynamic functions. J. Chem. Thermodyn. 11, 411–420 (1979)

    Article  CAS  Google Scholar 

  19. C.C. Yeh, C.R. Brooks, The heat capacity of platinum from 350 to 1200 K: experimental data and an analysis of contributions. High Temp. Sci. 5, 403–408 (1973)

    CAS  Google Scholar 

  20. Y. Tian, B. Xu, Z. Zhao, Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Met. Hard Mater. 33, 93–106 (2012)

    Article  CAS  Google Scholar 

  21. X.-Q. Chen, H. Niu, D. Li, Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19, 1275–1281 (2011)

    Article  CAS  Google Scholar 

  22. J. Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman, Thermo-Calc and DICTRA, computational tools for materials science. CALPHAD 26, 273–312 (2002)

    Article  CAS  Google Scholar 

  23. A. Zunger, S.-H. Wei, L.G. Ferreira, J.E. Bernard, Special quasirandom structures. Phys. Rev. Lett. 65, 353 (1990)

    Article  CAS  Google Scholar 

  24. A. van de Walle, Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit. CALPHAD 33, 266–278 (2009)

    Article  Google Scholar 

  25. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993)

    Article  CAS  Google Scholar 

  26. L. Kaufman, H. Bernstein, Computer Calculation of Phase Diagrams. With Special Reference to Refractory Metals (Academic, New York, 1970)

    Google Scholar 

  27. K. Burke, M. Ernzerhof, J.P. Perdew, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  28. A. Togo, I. Tanaka, First principle phonon calculations. Scr. Mater. 108, 1–5 (2015)

    Article  CAS  Google Scholar 

  29. W.H. Press, S.A. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes (Cambridge University Press, New York, 1986)

    Google Scholar 

  30. W. Voigt, Wechselbeziehungen zwischen einem Vektor und einem Tensortripel. In: Lehrbuch der kristallphysik (Leipzig: Teubner Leipzig, 1928), pp. 801–944

  31. O.H. Nielsen, R.M. Martin, First-principle calculations of stress. Phys. Rev. Lett. 50, 697–700 (1983)

    Article  CAS  Google Scholar 

  32. A. Reuss, Z. Angnew, A calculation of the bulk modulus of polycrystalline materials. Math. Methods 9, 55 (1929)

    Google Scholar 

  33. X. Luan, H. Qin, F. Liu, Z. Dai, Y. Yi, Q. Li, The mechanical properties and elastic anisotropies of cubic Ni3Al from first principles calculations. Crystals 8, 307–318 (2018)

    Article  Google Scholar 

  34. S. Boucetta, Theoretical study of elastic, mechanical and thermodynamic properties of MgRh intermetallic compound. J. Magnes. Alloys 2, 59–63 (2014)

    Article  CAS  Google Scholar 

  35. C.E. Ho, T.T. Kuo, W. Gierlotka, F.M. Ma, Development and evaluation of direct deposition of Au/Pd(P) bilayers over Cu pads in soldering applications. J. Electron. Mater. 41, 3276–3283 (2012)

    Article  CAS  Google Scholar 

  36. W. Gierlotka, Thermodynamic description of the quaternary Ag–Cu–In–Sn system. J. Electron. Mater. 41, 86–108 (2011)

    Article  Google Scholar 

  37. S.W. Chen, H.J. Wu, Y.C. Huang, W. Gierlotka, Phase equilibria and solidification of ternary Sn–Bi–Ag alloys. J. Alloys Compd. 497, 110–117 (2010)

    Article  CAS  Google Scholar 

  38. Y.C. Huang, W. Gierlotka, S.W. Chen, Sn–Bi–Fe thermodynamic modeling and Sn–Bi/Fe interfacial reactions. Intermetallics 18, 984–991 (2010)

    Article  CAS  Google Scholar 

  39. Scientific Group Thermodata Europe, SGTE Unary Database v. 5 (Scientific Group Thermodata Europe, 2015)

Download references

Acknowledgments

The work was partially supported by PL-Grid Infrastructure. This work is supported by the National Science Centre, Poland (Project No. 2018/31/B/ST8/01371, 2019–2022). The work was supported by the Ministry of Science and Technology (Taiwan) under Grant 109-2221-E-259-005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Gierlotka.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gierlotka, W., Dębski, A., Terlicka, S. et al. Theoretical studies of the thermodynamic and mechanical properties of Mg–Pt system. An insight into phase equilibria. Journal of Materials Research 37, 1904–1915 (2022). https://doi.org/10.1557/s43578-022-00603-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00603-4

Keywords

Navigation