Skip to main content

Advertisement

Log in

3D printed hydroxyapatite-nacre-starch based bone grafts: Evaluation of biological and mechanical properties

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The possibilities of utilizing nacre as a reinforcing material to manufacture 3D printed bone grafts are yet to be explored. This work reports the feasibility of fabricating 3D printed nacre-hydroxyapatite-starch composite bone graft substitutes, emphasizing the effects of nacre addition on biological and mechanical properties. Pressure-less extrusion-based 3D printing of ceramic-polymer viscous slurry is challenging due to the composition and process-parameter variations. To overcome these challenges, a dual extrusion solid freeform fabricator (SFF) has been designed. An increase in nacre loading improves the compressive strength from 9.5 ± 0.1 MPa to 11.7 ± 0.2 MPa, without any post-processing or sintering. Nacre’s in vitro osteogenic properties lead to a slight increase in hFOB cellular attachment on the graft surface by day 11. The fabricated structures show good mechanical integrity during the dissolution study in simulated body fluid (SBF). These bone graft substitutes may be utilized to repair low load bearing skeletal defects.

Graphical abstract

Graphical abstract showing the molecular structure of HA, nacre, and starch (L), construction of the in-house solid free form fabricator, and fabricated nacre-hydroxyapatite based 3D printed graft substitutes, utilizing gelatinized starch as a binder (M). The extreme right part of GA shows the possible applications of these structures in low load bearing defect repairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data reported in this work will be made available at reasonable request.

References

  1. A. Litwic, M.H. Edwards, E.M. Dennison, C. Cooper, Epidemiology and burden of osteoarthritis. Br. Med. Bull. 105(1), 185 (2013)

    Article  Google Scholar 

  2. T. Kokubo, H.-M. Kim, M. Kawashita, Novel bioactive materials with different mechanical properties. Biomaterials 24(13), 2161 (2003)

    Article  CAS  Google Scholar 

  3. S. Bose, S. Vahabzadeh, A. Bandyopadhyay, Bone tissue engineering using 3D printing. Mater. Today 16(12), 496 (2013)

    Article  CAS  Google Scholar 

  4. M. Dziadek, E. Stodolak-Zych, K. Cholewa-Kowalska, Biodegradable ceramic-polymer composites for biomedical applications: a review. Mater. Sci. Eng. C 71, 1175 (2017)

    Article  CAS  Google Scholar 

  5. N. Top, İ Şahin, H. Gökçe, H. Gökçe, Computer-aided design and additive manufacturing of bone scaffolds for tissue engineering: state of the art. J. Mater. Res. 36, 3725–3745 (2021)

    Article  CAS  Google Scholar 

  6. G.E. Daoud, D.L. Pezzutti, C.J. Dolatowski, R.L. Carrau, M. Pancake, E. Herderick, K.K. VanKoevering, Establishing a point-of-care additive manufacturing workflow for clinical use. J. Mater. Res. 36, 3761–3780 (2021)

    Article  CAS  Google Scholar 

  7. A. Mostafaei, A.M. Elliott, J.E. Barnes, F. Li, W. Tan, C.L. Cramer, P. Nandwana, M. Chmielus, Binder jet 3D printing—process parameters, materials, properties, and challenges. Prog. Mater. Sci. 119, 100707 (2020)

    Article  CAS  Google Scholar 

  8. W. Chengwei, P. Weiwei, B. Qiang, C. Huachen, H. Ryan, W. Ruiliu, B.A.H., X. Zhenpeng, D. Jiaqi, P. Yong, Z. Chaolun, P. Glenn, G. Jinlong, W. Xizheng, W. Howard, Z. Ji-Cheng, Y. Bao, Z. X. (Rayne), L. Jian, M. Yifei, D. Bruce, and H. Liangbing: A general method to synthesize and sinter bulk ceramics in seconds. Science (80–) 368(6490), 521 (2020)

  9. R. Masaeli, K. Zandsalimi, M. Rasoulianboroujeni, L. Tayebi, Challenges in three-dimensional printing of bone substitutes. Tissue Eng. Part B Rev. 25(5), 387 (2019)

    Article  Google Scholar 

  10. U. Gbureck, T. Hölzel, U. Klammert, K. Würzler, F.A. Müller, J.E. Barralet, Resorbable dicalcium phosphate bone substitutes prepared by 3D powder printing. Adv. Funct. Mater. 17(18), 3940 (2007)

    Article  CAS  Google Scholar 

  11. J.-H. Shim, J.Y. Kim, M. Park, J. Park, D.-W. Cho, Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology. Biofabrication 3(3), 34102 (2011)

    Article  CAS  Google Scholar 

  12. S.L. Morissette, J.A. Lewis, J. Cesarano, D.B. Dimos, T. Baer, Solid freeform fabrication of aqueous alumina–poly(vinyl alcohol) gelcasting suspensions. J. Am. Ceram. Soc. 83(10), 2409 (2000)

    Article  CAS  Google Scholar 

  13. A. Hadian, L. Koch, P. Koberg, F. Sarraf, A. Liersch, T. Sebastian, F. Clemens, Material extrusion based additive manufacturing of large zirconia structures using filaments with ethylene vinyl acetate based binder composition. Addit. Manuf. 47, 102227 (2021)

    CAS  Google Scholar 

  14. C. Koski, B. Onuike, A. Bandyopadhyay, S. Bose, Starch-hydroxyapatite composite bone scaffold fabrication utilizing a slurry extrusion-based solid freeform fabricator. Addit. Manuf. 24, 47 (2018)

    CAS  Google Scholar 

  15. P. Westbroek, F. Marin, A marriage of bone and nacre. Nature 392(6679), 861 (1998)

    Article  CAS  Google Scholar 

  16. Y. Yang, X. Li, M. Chu, H. Sun, J. Jin, K. Yu, Q. Wang, Q. Zhou, Y. Chen, Electrically assisted 3D printing of nacre-inspired structures with self-sensing capability. Sci. Adv. 5(4), eaau9490 (2019)

    Article  CAS  Google Scholar 

  17. M. Ni, B.D. Ratner, Nacre surface transformation to hydroxyapatite in a phosphate buffer solution. Biomaterials 24(23), 4323 (2003)

    Article  CAS  Google Scholar 

  18. M. Lamghari, M.J. Almeida, S. Berland, H. Huet, A. Laurent, C. Milet, E. Lopez, Stimulation of bone marrow cells and bone formation by nacre: in vivo and in vitro studies. Bone 25(2 Suppl), 91S (1999)

    Article  CAS  Google Scholar 

  19. M. Lamghari, S. Berland, A. Laurent, H. Huet, E. Lopez, Bone reactions to nacre injected percutaneously into the vertebrae of sheep. Biomaterials 22(6), 555 (2001)

    Article  CAS  Google Scholar 

  20. K. Ko, S. Jin, S.E. Lee, J.-W. Hong, Impact resistance of nacre-like composites diversely patterned by 3D printing. Compos. Struct. 238, 111951 (2020)

    Article  Google Scholar 

  21. D. Verma, K. Katti, D. Katti, Photoacoustic FTIR spectroscopic study of undisturbed nacre from red abalone. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 64(4), 1051 (2006)

    Article  CAS  Google Scholar 

  22. Y. Ma, Y. Gao, Q. Feng, Characterization of organic matrix extracted from fresh water pearls. Mater. Sci. Eng. C 31(7), 1338 (2011)

    Article  CAS  Google Scholar 

  23. H. Chim, D.W. Hutmacher, A.M. Chou, A.L. Oliveira, R.L. Reis, T.C. Lim, J.-T. Schantz, A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering. Int. J. Oral Maxillofac. Surg. 35(10), 928 (2006)

    Article  CAS  Google Scholar 

  24. Y. Song, Y. Lu, H. Ding, H. Lv, G. Gao, C. Sun, Structural characteristics at the adductor muscle and shell interface in mussel. Appl. Biochem. Biotechnol. 171(5), 1203 (2013)

    Article  CAS  Google Scholar 

  25. G.L. Koons, M. Diba, A.G. Mikos, Materials design for bone-tissue engineering. Nat. Rev. Mater. 5(8), 584 (2020)

    Article  CAS  Google Scholar 

  26. Y. Yang, X. Song, X. Li, Z. Chen, C. Zhou, Q. Zhou, Y. Chen, Recent Progress in biomimetic additive manufacturing technology: from materials to functional structures. Adv. Mater. 30(36), 1706539 (2018)

    Article  CAS  Google Scholar 

  27. C. Koski, S. Bose, Effects of amylose content on the mechanical properties of starch-hydroxyapatite 3D printed bone scaffolds. Addit. Manuf. 30, 100817 (2019)

    CAS  Google Scholar 

  28. S.F. Robertson, S. Bose, Enhanced osteogenesis of 3D printed β-TCP scaffolds with Cissus quadrangularis extract-loaded polydopamine coatings. J. Mech. Behav. Biomed. Mater. 111, 103945 (2020)

    Article  CAS  Google Scholar 

  29. P.-Y. Chen, A.Y.M. Lin, Y.-S. Lin, Y. Seki, A.G. Stokes, J. Peyras, E.A. Olevsky, M.A. Meyers, J. McKittrick, Structure and mechanical properties of selected biological materials. J. Mech. Behav. Biomed. Mater. 1(3), 208 (2008)

    Article  Google Scholar 

  30. I.M. Weiss, W. Göhring, M. Fritz, K. Mann, Perlustrin, a Haliotis laevigata (Abalone) nacre protein, is homologous to the insulin-like growth factor binding protein N-terminal module of vertebrates. Biochem. Biophys. Res. Commun. 285(2), 244 (2001)

    Article  CAS  Google Scholar 

  31. C. Bergmann, M. Lindner, W. Zhang, K. Koczur, A. Kirsten, R. Telle, H. Fischer, 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J. Eur. Ceram. Soc. 30(12), 2563 (2010)

    Article  CAS  Google Scholar 

  32. Y.-W. Kim, J.-J. Kim, Y.H. Kim, J.-Y. Rho, Effects of organic matrix proteins on the interfacial structure at the bone–biocompatible nacre interface in vitro. Biomaterials 23(9), 2089 (2002)

    Article  CAS  Google Scholar 

  33. S.S. Banerjee, A. Bandyopadhyay, S. Bose, Biphasic resorbable calcium phosphate ceramic for bone implants and local alendronate delivery. Adv. Eng. Mater. 12(5), B148 (2010)

    Article  CAS  Google Scholar 

  34. W. Xue, B.V. Krishna, A. Bandyopadhyay, S. Bose, Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater. 3(6), 1007 (2007)

    Article  CAS  Google Scholar 

  35. D.W. Green, H.-J. Kwon, H.-S. Jung, Osteogenic potency of nacre on human mesenchymal stem cells. Mol. Cells 38(3), 267 (2015)

    Article  CAS  Google Scholar 

  36. E.V. Alakpa, K.E.V. Burgess, P. Chung, M.O. Riehle, N. Gadegaard, M.J. Dalby, M. Cusack, Nacre topography produces higher crystallinity in bone than chemically induced osteogenesis. ACS Nano 11(7), 6717 (2017)

    Article  CAS  Google Scholar 

  37. C. Silve, E. Lopez, B. Vidal, D.C. Smith, S. Camprasse, G. Camprasse, G. Couly, Nacre initiates biomineralization by human osteoblasts maintained in vitro. Calcif. Tissue Int. 51(5), 363 (1992)

    Article  CAS  Google Scholar 

  38. Y. Cheng, W. Zhang, H. Fan, P. Xu, Water-soluble nano-pearl powder promotes MC3T3-E1 cell differentiation by enhancing autophagy via the MEK/ERK signaling pathway. Mol. Med. Rep. 18(1), 993 (2018)

    CAS  Google Scholar 

  39. A. Wang, H. Zhang, Z. Liang, K. Xu, W. Qiu, Y. Tian, H. Guo, J. Jia, E. Xing, R. Chen, Z. Xiang, J. Liu, U0126 attenuates ischemia/reperfusion-induced apoptosis and autophagy in myocardium through MEK/ERK/EGR-1 pathway. Eur. J. Pharmacol. 788, 280 (2016)

    Article  CAS  Google Scholar 

  40. S. Bose, A. Bhattacharjee, D. Banerjee, A.R. Boccaccini, A. Bandyopadhyay, Influence of random and designed porosities on 3D printed tricalcium phosphate-bioactive glass scaffolds. Addit. Manuf. 40, 101895 (2021)

    CAS  Google Scholar 

  41. M. Roy, G.A. Fielding, A. Bandyopadhyay, S. Bose, Effects of zinc and strontium substitution in tricalcium phosphate on osteoclast differentiation and resorption. Biomater. Sci. 1(1), 74 (2013)

    Article  CAS  Google Scholar 

  42. S. Tarafder, S. Banerjee, A. Bandyopadhyay, S. Bose, Electrically polarized biphasic calcium phosphates: adsorption and release of bovine serum albumin. Langmuir 26(22), 16625 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge financial support from the National Institute of Dental and Craniofacial Research (NIDCR) of the NIH grant number R01 DE029204-01 (PI: Bose), and National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) of the National Institutes of Health under grant number R01 AR066361 (PI: Bose). The authors would also like to thank the Franceschi Microscopy & Imaging Center (WSU) as well the Electron Microscopy Center (University of Idaho). Dr. Bonny Onuike, Ms. Ashley Vu, and Dr. Naboneeta Sarkar are acknowledged for their assistance with experimental help to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susmita Bose.

Ethics declarations

Conflict of interest

The authors do not have any possible conflict of interest. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Health.

Additional information

Susmita Bose was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 317 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bose, S., Koski, C. & Bhattacharjee, A. 3D printed hydroxyapatite-nacre-starch based bone grafts: Evaluation of biological and mechanical properties. Journal of Materials Research 37, 2033–2044 (2022). https://doi.org/10.1557/s43578-022-00602-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00602-5

Keywords

Navigation