Skip to main content

Advertisement

Log in

Zinc curcumin complex on fluoride doped hydroxyapatite with enhanced biological properties for dental and orthopedic applications

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Since antiquity, curcumin, from turmeric is utilized in traditional Indian medicine (Ayurveda) to treat bone disorders. However, the hydrophobic nature and poor absorption of curcumin limit its clinical applications. There is a need to develop a novel strategy that can significantly enhance curcumin’s biological properties. The current work reports the utilization of Zn2+–curcumin complex from a fluoride doped hydroxyapatite matrix for osteosarcoma inhibition, osteoblast growth, and anti-bacterial properties. The interaction between Zn2+ and curcumin increases curcumin release by ~ 2.5 folds. The fabricated drug delivery system shows up to ~ 1.6 times enhancement in osteoblast cell viability. The presence of curcumin results in ~ 4 times more osteosarcoma inhibition compared to control. The antibacterial efficacy of this system is confirmed against Staphylococcus aureus, due to the presence of antibacterial fluoride, zinc, and curcumin. This multifunctional drug delivery system can be utilized for various bone-tissue engineering and dental applications.

Graphical abstract

Graphical abstract representing the summary of the current work from sample preparation to assessment of biological properties

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

Data reported in this manuscript can be made available upon reasonable request.

References

  1. M. Kansara, M.W. Teng, M.J. Smyth, D.M. Thomas, Translational biology of osteosarcoma. Nat. Rev. Cancer 14(11), 722 (2014)

    Article  CAS  Google Scholar 

  2. N. Sarkar, S. Bose, Controlled delivery of curcumin and vitamin K2 from hydroxyapatite-coated titanium implant for enhanced in vitro chemoprevention, osteogenesis, and in vivo osseointegration. ACS Appl. Mater. Interfaces 12(12), 13644 (2020)

    Article  CAS  Google Scholar 

  3. J. Henkel, M.A. Woodruff, D.R. Epari, R. Steck, V. Glatt, I.C. Dickinson, P.F.M. Choong, M.A. Schuetz, D.W. Hutmacher, Bone regeneration based on tissue engineering conceptions—a 21st century perspective. Bone Res. 1(1), 216 (2013)

    Article  CAS  Google Scholar 

  4. A. Litwic, M.H. Edwards, E.M. Dennison, C. Cooper, Epidemiology and burden of osteoarthritis. Br. Med. Bull. 105(1), 185 (2013)

    Article  Google Scholar 

  5. S. Banerjee, C. Ji, J.E. Mayfield, A. Goel, J. Xiao, J.E. Dixon, X. Guo, Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2. Proc. Natl. Acad. Sci. USA 115(32), 8155 (2018)

    Article  CAS  Google Scholar 

  6. M.K. Gaydhane, J.S. Kanuganti, C.S. Sharma, Honey and curcumin loaded multilayered polyvinylalcohol/cellulose acetate electrospun nanofibrous mat for wound healing. J. Mater. Res. 35(6), 600 (2020)

    Article  CAS  Google Scholar 

  7. B.B. Aggarwal, C. Sundaram, N. Malani, H. Ichikawa, Curcumin: the Indian solid gold, in The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. ed. by B.B. Aggarwal, Y.-J. Surh, S. Shishodia (Springer, Boston, 2007), p. 1

    Chapter  Google Scholar 

  8. D. Bandyopadhyay, Farmer to pharmacist: curcumin as an anti-invasive and antimetastatic agent for the treatment of cancer1. Front. Chem. 2, 113 (2014)

    Article  Google Scholar 

  9. S. Prasad, D. DuBourdieu, A. Srivastava, P. Kumar, R. Lall, Metal–curcumin complexes in therapeutics: an approach to enhance pharmacological effects of curcumin. Int. J. Mol. Sci. 22(13), 7094 (2021)

    Article  CAS  Google Scholar 

  10. K. Hassanzadeh, L. Buccarello, J. Dragotto, A. Mohammadi, M. Corbo, M. Feligioni, Obstacles against the marketing of curcumin as a drug. Int. J. Mol. Sci. 21(18), 6619 (2020)

    Article  CAS  Google Scholar 

  11. N. Sarkar, S. Bose, Liposome-encapsulated curcumin-loaded 3D printed scaffold for bone tissue engineering. ACS Appl. Mater. Interfaces 11(19), 17184 (2019)

    Article  CAS  Google Scholar 

  12. R. Sareen, N. Jain, K.L. Dhar, Curcumin–Zn(II) complex for enhanced solubility and stability: an approach for improved delivery and pharmacodynamic effects. Pharm. Dev. Technol. 21(5), 630 (2016)

    Article  CAS  Google Scholar 

  13. M.I. Martins, M.A. Rodrigues, M.A. Lopes, J.D. Santos, Preparation and characterization of customized bone grafting hydroxyapatite models obtained by digital light processing 3D printing. J. Mater. Res. 37(3), 784 (2022)

    Article  CAS  Google Scholar 

  14. L. Wang, M. Wang, M. Li, Z. Shen, Y. Wang, Y. Shao, Y. Zhu, Trace fluorine substituted calcium deficient hydroxyapatite with excellent osteoblastic activity and antibacterial ability. CrystEngComm 20(38), 5744 (2018)

    Article  CAS  Google Scholar 

  15. H.R. Bakhsheshi-Rad, E. Hamzah, M. Kasiri-Asgarani, S. Jabbarzare, N. Iqbal, M.R.A. Kadir, Deposition of nanostructured fluorine-doped hydroxyapatite–polycaprolactone duplex coating to enhance the mechanical properties and corrosion resistance of Mg alloy for biomedical applications. Mater. Sci. Eng. C 60, 526 (2016)

    Article  CAS  Google Scholar 

  16. S. Bose, S. Tarafder, Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 8(4), 1401 (2012)

    Article  CAS  Google Scholar 

  17. A.E. Jakus, A.L. Rutz, S.W. Jordan, A. Kannan, S.M. Mitchell, C. Yun, K.D. Koube, S.C. Yoo, H.E. Whiteley, C.-P. Richter, Hyperelastic “bone”: a highly versatile, growth factor–free, osteoregenerative, scalable, and surgically friendly biomaterial. Sci. Transl. Med. 8(358), 358ra127 (2016)

    Article  Google Scholar 

  18. M.N.P. Vidal, J.M. Granjeiro, Cytotoxicity tests for evaluating medical devices: an alert for the development of biotechnology health products. J. Biomed. Sci. Eng. 10(09), 431 (2017)

    Article  CAS  Google Scholar 

  19. M. Sloan, A. Premkumar, N.P. Sheth, Projected volume of primary total joint arthroplasty in the US, 2014 to 2030. JBJS 100(17), 1455 (2018)

    Article  Google Scholar 

  20. A. Luetke, P.A. Meyers, I. Lewis, H. Juergens, Osteosarcoma treatment—where do we stand? A state of the art review. Cancer Treat. Rev. 40(4), 523 (2014)

    Article  Google Scholar 

  21. H. Hatcher, R. Planalp, J. Cho, F.M. Torti, S.V. Torti, Curcumin: from ancient medicine to current clinical trials. Cell. Mol. Life Sci. 65(11), 1631 (2008)

    Article  CAS  Google Scholar 

  22. J.E. Noe, l-Glutamine use in the treatment and prevention of mucositis and cachexia: a naturopathic perspective. Integr. Cancer Ther. 8(4), 409 (2009)

    Article  CAS  Google Scholar 

  23. H.R. Bakhsheshi-Rad, E. Hamzah, M. Daroonparvar, R. Ebrahimi-Kahrizsangi, M. Medraj, In-vitro corrosion inhibition mechanism of fluorine-doped hydroxyapatite and brushite coated Mg–Ca alloys for biomedical applications. Ceram. Int. 40(6), 7971 (2014)

    Article  CAS  Google Scholar 

  24. T. White, C. Ferraris, J. Kim, S. Madhavi, Apatite—an adaptive framework structure. Rev. Mineral. Geochem. 57(1), 307 (2005)

    Article  CAS  Google Scholar 

  25. J. Cao, R. Lian, X. Jiang, A.V. Rogachev, In vitro degradation assessment of calcium fluoride-doped hydroxyapatite coating prepared by pulsed laser deposition. Surf. Coat. Technol. 416, 127177 (2021)

    Article  CAS  Google Scholar 

  26. M. Roy, G.A. Fielding, A. Bandyopadhyay, S. Bose, Effects of zinc and strontium substitution in tricalcium phosphate on osteoclast differentiation and resorption. Biomater. Sci. 1(1), 74 (2013)

    Article  CAS  Google Scholar 

  27. S. Grabner, B. Modec, Zn(II) curcuminate complexes with 2,2′-bipyridine and carboxylates. Molecules 24(14), 2540 (2019)

    Article  CAS  Google Scholar 

  28. J. Li, L. Tan, X. Liu, Z. Cui, X. Yang, K.W.K. Yeung, P.K. Chu, S. Wu, Balancing bacteria-osteoblast competition through selective physical puncture and biofunctionalization of ZnO/polydopamine/arginine-glycine-aspartic acid-cysteine nanorods. ACS Nano 11(11), 11250 (2017)

    Article  CAS  Google Scholar 

  29. S. Tarafder, S. Bose, Polycaprolactone-coated 3D printed tricalcium phosphate scaffolds for bone tissue engineering: in vitro alendronate release behavior and local delivery effect on in vivo osteogenesis. ACS Appl. Mater. Interfaces 6(13), 9955 (2014)

    Article  CAS  Google Scholar 

  30. S. Hesaraki, R. Nemati, Cephalexin-loaded injectable macroporous calcium phosphate bone cement. J. Biomed. Mater. Res. B 89B(2), 342 (2009)

    Article  CAS  Google Scholar 

  31. J.E. Shea, S.C. Miller, Skeletal function and structure: implications for tissue-targeted therapeutics. Adv. Drug Deliv. Rev. 57(7), 945 (2005)

    Article  CAS  Google Scholar 

  32. D. Zheng, C. Huang, H. Huang, Y. Zhao, M.R.U. Khan, H. Zhao, L. Huang, Antibacterial mechanism of curcumin: a review. Chem. Biodivers. 17(8), e2000171 (2020)

    Article  CAS  Google Scholar 

  33. R.M. Couñago, M.P. Ween, S.L. Begg, M. Bajaj, J. Zuegg, M.L. O’mara, M.A. Cooper, A.G. McEwan, J.C. Paton, B. Kobe, Imperfect coordination chemistry facilitates metal ion release in the Psa permease. Nat. Chem. Biol. 10(1), 35 (2014)

    Article  Google Scholar 

  34. F. Hussan, N.G. Ibraheem, T.A. Kamarudin, A.N. Shuid, I.N. Soelaiman, F. Othman, Curcumin protects against ovariectomy-induced bone changes in rat model. Evid. Based Complement. Altern. Med. (2012). https://doi.org/10.1155/2012/174916

    Article  Google Scholar 

  35. H. Azriel-Tamir, H. Sharir, B. Schwartz, M. Hershfinkel, Extracellular zinc triggers ERK-dependent activation of Na+/H+ exchange in colonocytes mediated by the zinc-sensing receptor*. J. Biol. Chem. 279(50), 51804 (2004)

    Article  CAS  Google Scholar 

  36. S. Tarafder, S. Banerjee, A. Bandyopadhyay, S. Bose, Electrically polarized biphasic calcium phosphates: adsorption and release of bovine serum albumin. Langmuir 26(22), 16625 (2010)

    Article  CAS  Google Scholar 

  37. M.L. Bruschi, Strategies to Modify the Drug Release from Pharmaceutical Systems (Woodhead Publishing, Sawston, 2015), pp. 63–86

    Google Scholar 

  38. S. Bose, A. Bhattacharjee, D. Banerjee, A.R. Boccaccini, A. Bandyopadhyay, Influence of random and designed porosities on 3D printed tricalcium phosphate-bioactive glass scaffolds. Addit. Manuf. 40, 101895 (2021)

    CAS  Google Scholar 

  39. V.K. Balla, W. Xue, S. Bose, A. Bandyopadhyay, Laser-assisted Zr/ZrO2 coating on Ti for load-bearing implants. Acta Biomater. 5(7), 2800 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the National Institute of Dental and Craniofacial Research (NIDCR) of the NIH Grant Number R01 DE029204-01 (PI: Bose). The authors would also like to thank the Franceschi Microscopy & Imaging Center (Washington State University) and the Electron Microscopy Center (University of Idaho).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susmita Bose.

Ethics declarations

Conflict of interest

The authors do not have any possible conflict of interest. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Health.

Additional information

Susmita Bose was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, A., Bose, S. Zinc curcumin complex on fluoride doped hydroxyapatite with enhanced biological properties for dental and orthopedic applications. Journal of Materials Research 37, 2009–2020 (2022). https://doi.org/10.1557/s43578-022-00595-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00595-1

Keywords

Navigation