Skip to main content

Advertisement

Log in

Theoretical investigation on the electronic structure of new InSe/CrS2 van der Waals heterostructure

  • Invited Paper
  • FOCUS ISSUE: Transition Metal-Based Nanomaterials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Atomically thin, two-dimensional (2D) indium selenide (InSe) is a new graphene-like semiconducting material which has gained significant attention due to the large tunability in the bandgap (from 1.4 to 2.6 eV) and high carrier mobility. Constructing InSe-based van der Waals heterostructure (vdWH) is a potential way to achieve more desirable properties and further extend the application of InSe. Herein, we firstly demonstrate the electronic and optical properties of the InSe/CrS2 vdWH by using first-principles calculation. Our results suggest that this heterostructure has an intrinsic mixing band alignment with the bandgap of 1.20 eV, which shows a good light absorption in visible light region. Meanwhile, an intrinsic mixing band alignment can be transformed between type-I and type-II. Moreover, the bandgap values can be tuned by applying electric field. These results indicate that the flexible InSe/CrS2 vdWH can provide new ways to utilize 2D materials in future optoelectronic devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data are a part of an ongoing study.

References

  1. C.S. Jung, F. Shojaei, K. Park, J.Y. Oh, H.S. Im, D.M. Jang, J. Park, H.S. Kang, ACS Nano 9, 9585 (2015)

    Article  CAS  Google Scholar 

  2. S. Rahmstorf, J.E. Box, G. Feulner, M.E. Mann, A. Robinson, S. Rutherford, E.J. Schaffernicht, Nat. Clim. Change 5, 475 (2015)

    Article  Google Scholar 

  3. F.F. Zhu, W.J. Chen, Y. Xu, C.L. Gao, D.D. Guan, C.H. Liu, D. Qian, S.C. Zhang, J.F. Jia, Nat. Mater. 14, 1020 (2015)

    Article  CAS  Google Scholar 

  4. L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Nat. Nanotechnol. 9, 372 (2014)

    Article  CAS  Google Scholar 

  5. S. Balendhran, S. Walia, H. Nili, S. Sriram, M. Bhaskaran, Small 11, 640 (2015)

    Article  CAS  Google Scholar 

  6. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7, 699 (2012)

    Article  CAS  Google Scholar 

  7. P. Le, M. Yarmohammadi, Physica E 107, 11 (2019)

    Article  CAS  Google Scholar 

  8. H. Bui, M. Yarmohammadi, J. Magn. Magn. Mater. 465, 646 (2018)

    Article  CAS  Google Scholar 

  9. P. Le, M. Davoudiniya, K. Mirabbaszadeh, B. Hoi, M. Yarmohammadi, Physica E 106, 250 (2019)

    Article  CAS  Google Scholar 

  10. H. Bui, L.T. Phuong, M. Yarmohammadi, Europhys. Lett. 124, 27001 (2018)

    Article  Google Scholar 

  11. M. Yarmohammadi, J. Electron. Mater. 45, 4958 (2016)

    Article  CAS  Google Scholar 

  12. M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, Nat. Chem. 5, 263 (2013)

    Article  Google Scholar 

  13. D.A. Bandurin, A.V. Tyurnina, G.L. Yu, A. Mishchenko, V. Zolyomi, S.V. Morozov, R.K. Kumar, R.V. Gorbachev, Z.R. Kudrynskyi, S. Pezzini, Z.D. Kovalyuk, U. Zeitler, K.S. Novoselov, A. Patane, L. Eaves, I.V. Grigorieva, V.I. Fal’ko, A.K. Geim, Y. Cao, Nat. Nanotechnol. 12, 223 (2017)

    Article  CAS  Google Scholar 

  14. G.W. Mudd, S.A. Svatek, T. Ren, A. Patane, O. Makarovsky, L. Eaves, P.H. Beton, Z.D. Kovalyuk, G.V. Lashkarev, Z.R. Kudrynskyi, A.I. Dmitriev, Adv. Mater. 25, 5714 (2013)

    Article  CAS  Google Scholar 

  15. G. Liu, K. Chen, J. Li, J. Am. Ceram. Soc. 101, 36 (2018)

    Article  CAS  Google Scholar 

  16. Z. Yang, W. Jie, C.H. Mak, S. Lin, H. Lin, X. Yang, F. Yan, S.P. Lau, J. Hao, ACS Nano 11, 4225 (2017)

    Article  CAS  Google Scholar 

  17. S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, ACS Nano 8, 1263 (2014)

    Article  CAS  Google Scholar 

  18. S. Magorrian, V. Zólyomi, V. Fal’Ko, Phys. Rev. B 94, 245431 (2016)

    Article  Google Scholar 

  19. F. Yan, L. Zhao, A. Patanè, P. Hu, X. Wei, W. Luo, D. Zhang, Q. Lv, Q. Feng, C. Shen, Nanotechnology 28, 27LT01 (2017)

    Article  Google Scholar 

  20. W. Zhang, D. Chang, Q. Gao, C. Niu, C. Li, F. Wang, X. Huang, C. Xia, Y. Jia, J. Mater. Chem. C 6, 10256 (2018)

    Article  CAS  Google Scholar 

  21. D. Pierucci, H. Henck, J. Avila, A. Balan, C.H. Naylor, G. Patriarche, Y.J. Dappe, M.G. Silly, F. Sirotti, A.C. Johnson, Nano Lett. 16, 4054 (2016)

    Article  CAS  Google Scholar 

  22. M. Sun, J.-P. Chou, J. Yu, W. Tang, Phys. Chem. Chem. Phys. 19, 17324 (2017)

    Article  CAS  Google Scholar 

  23. Y. Luo, S. Wang, K. Ren, J.-P. Chou, J. Yu, Z. Sun, M. Sun, Phys. Chem. Chem. Phys. 21, 1791 (2019)

    Article  CAS  Google Scholar 

  24. X. Zhang, T. Wu, C. Yu, R. Lu, Adv. Mater. 33, 2104695 (2021)

    Article  CAS  Google Scholar 

  25. X. Zhang, C. Yu, J. Guan, S. Jiang, Y. Wang, K. Deng, Z. Meng, R. Lu, Phys. Chem. Chem. Phys. 22, 9915 (2020)

    Article  CAS  Google Scholar 

  26. Y.-M. Ding, J.-J. Shi, C. Xia, M. Zhang, J. Du, P. Huang, M. Wu, H. Wang, Y.-L. Cen, S.-H. Pan, Nanoscale 9, 14682 (2017)

    Article  CAS  Google Scholar 

  27. W. Luo, Y. Cao, P. Hu, K. Cai, Q. Feng, F. Yan, T. Yan, X. Zhang, K. Wang, Adv. Opt. Mater. 3, 1418 (2015)

    Article  CAS  Google Scholar 

  28. J.E. Padilha, R.H. Miwa, A.J. da Silva, A. Fazzio, Phys. Rev. B 95, 195143 (2017)

    Article  Google Scholar 

  29. H.L. Zhuang, R.G. Hennig, Chem. Mater. 25, 3232 (2013)

    Article  CAS  Google Scholar 

  30. X. Li, C. Xia, X. Song, J. Du, W. Xiong, J. Mater. Sci. 52, 7207 (2017)

    Article  CAS  Google Scholar 

  31. C. Sun, H. Xiang, B. Xu, Y. Xia, J. Yin, Z. Liu, Appl. Phys. Express 9, 035203 (2016)

    Article  Google Scholar 

  32. X. Li, G. Jia, J. Du, X. Song, C. Xia, Z. Wei, J. Li, J. Mater. Chem. C 6, 10010 (2018)

    Article  CAS  Google Scholar 

  33. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  CAS  Google Scholar 

  34. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)

    Article  CAS  Google Scholar 

  35. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  CAS  Google Scholar 

  36. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  CAS  Google Scholar 

  37. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  Google Scholar 

  38. S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32, 1456 (2011)

    Article  CAS  Google Scholar 

  39. A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, G.E. Scuseria, J. Chem. Phys. 125, 224106 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11804393) and the Fundamental Research Funds for the Central Universities (18CX02043A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahui Guo.

Ethics declarations

Conflicts of interest

There is no conflict to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Zhao, L. & Zheng, D. Theoretical investigation on the electronic structure of new InSe/CrS2 van der Waals heterostructure. Journal of Materials Research 37, 2157–2164 (2022). https://doi.org/10.1557/s43578-022-00548-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00548-8

Keywords

Navigation