Skip to main content
Log in

Influence of compositional complexity on species diffusion behavior in high-entropy solid-solution alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Detailed comparative molecular dynamics simulations of the diffusion process in a model quinary equiatomic FeNiCrCoCu FCC alloy are presented. Vacancy-assisted diffusion is studied by a statistical technique obtaining distributions of vacancy formation and migration energy values. In addition, vacancy migration is simulated using molecular dynamics at high temperatures and monitoring mean square displacements over time. To assess the role of compositional complexity, the results are compared to corresponding simulations in each of the pure individual components of the alloy as well as the corresponding “average atom” potential, with similar properties to the alloy but no compositional randomness. The comparison shows that the diffusion kinetics in the random alloy is not slower than in the average atom material or the average of the components, indicating that compositional fluctuations do not always result in “sluggish” diffusion. The results are compared with experimental data for self-diffusion in similar high-entropy alloys.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications. Science 345(6201), 1153–1158 (2014)

    Article  CAS  Google Scholar 

  2. Y. Ye, Q. Wang, J. Lu, C. Liu, Y. Yang, High-entropy alloy: challenges and prospects. Mater. Today 19(6), 349–362 (2016)

    Article  CAS  Google Scholar 

  3. E. Pickering, N. Jones, High-entropy alloys: a critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61(3), 183–202 (2016)

    Article  CAS  Google Scholar 

  4. G.D. Sathiaraj, P.P. Bhattacharjee, Effect of cold-rolling strain on the evolution of annealing texture of equiatomic CoCrFeMnNi high entropy alloy. Mater. Charact. 109, 189–197 (2015)

    Article  CAS  Google Scholar 

  5. C.W. Tsai, Y.L. Chen, M.H. Tsai, J.W. Yeh, T.T. Shun, S.K. Chen, Deformation and annealing behaviors of high-entropy alloy Al05CoCrCuFeNi. J. Alloys Compd. 486(1–2), 427–435 (2009)

    Article  CAS  Google Scholar 

  6. T. Butler, J. Alfano, R. Martens, M. Weaver, High-temperature oxidation behavior of Al–Co–Cr–Ni–(Fe or Si) multicomponent high-entropy alloys. JOM 67(1), 246–259 (2015)

    Article  CAS  Google Scholar 

  7. D.H. Lee, M.Y. Seok, Y. Zhao, I.C. Choi, J. He, Z. Lu, J.Y. Suh, U. Ramamurty, M. Kawasaki, T.G. Langdon, Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys. Acta Mater. 109, 314–322 (2016)

    Article  CAS  Google Scholar 

  8. K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61(13), 4887–4897 (2013)

    Article  CAS  Google Scholar 

  9. S.V. Divinski, A.V. Pokoev, N. Esakkiraja, A. Paul, A mystery of" sluggish diffusion" in high-entropy alloys: the truth or a myth? (Trans Tech Publ, Diffusion Foundations, 2018), pp. 69–104

    Google Scholar 

  10. J. Dąbrowa, M. Danielewski, State-of-the-art diffusion studies in the high entropy alloys. Metals 10(3), 347 (2020)

    Article  CAS  Google Scholar 

  11. J. Dąbrowa, M. Zajusz, W. Kucza, G. Cieślak, K. Berent, T. Czeppe, T. Kulik, M. Danielewski, Demystifying the sluggish diffusion effect in high entropy alloys. J. Alloy. Compd. 783, 193–207 (2019)

    Article  CAS  Google Scholar 

  12. J. Dąbrowa, W. Kucza, G. Cieślak, T. Kulik, M. Danielewski, J.-W. Yeh, Interdiffusion in the FCC-structured Al–Co–Cr–Fe–Ni high entropy alloys: experimental studies and numerical simulations. J. Alloy. Compd. 674, 455–462 (2016)

    Article  CAS  Google Scholar 

  13. M. Vaidya, S. Trubel, B. Murty, G. Wilde, S.V. Divinski, Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. J. Alloy. Compd. 688, 994–1001 (2016)

    Article  CAS  Google Scholar 

  14. M. Vaidya, K. Pradeep, B. Murty, G. Wilde, S. Divinski, Radioactive isotopes reveal a non sluggish kinetics of grain boundary diffusion in high entropy alloys. Sci. Rep. 7(1), 1–11 (2017)

    Article  CAS  Google Scholar 

  15. V. Verma, A. Tripathi, K.N. Kulkarni, On interdiffusion in FeNiCoCrMn high entropy alloy. J. Phase Equilib. Diffus. 38(4), 445–456 (2017)

    Article  CAS  Google Scholar 

  16. C. Zhang, F. Zhang, K. Jin, H. Bei, S. Chen, W. Cao, J. Zhu, D. Lv, Understanding of the elemental diffusion behavior in concentrated solid solution alloys. J. Phase Equilib. Diffus. 38(4), 434–444 (2017)

    Article  CAS  Google Scholar 

  17. M. Vaidya, K. Pradeep, B. Murty, G. Wilde, S. Divinski, Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Acta Mater. 146, 211–224 (2018)

    Article  CAS  Google Scholar 

  18. D. Gaertner, J. Kottke, G. Wilde, S.V. Divinski, Y. Chumlyakov, Tracer diffusion in single crystalline CoCrFeNi and CoCrFeMnNi high entropy alloys. J. Mater. Res. 33(19), 3184–3191 (2018)

    Article  CAS  Google Scholar 

  19. J. Kottke, M. Laurent-Brocq, A. Fareed, D. Gaertner, L. Perrière, Ł Rogal, S.V. Divinski, G. Wilde, Tracer diffusion in the Ni–CoCrFeMn system: Transition from a dilute solid solution to a high entropy alloy. Scripta Mater. 159, 94–98 (2019)

    Article  CAS  Google Scholar 

  20. J. Kottke, D. Utt, M. Laurent Brocq, A. Fareed, D. Gaertner, L. Perrière, Ł Rogal, A. Stukowski, K. Albe, S.V. Divinski, Experimental and theoretical study of tracer diffusion in a series of (CoCrFeMn)100−xNix alloys. Acta Mater. 194, 236–248 (2020)

    Article  CAS  Google Scholar 

  21. W. Chen, L. Zhang, High-throughput determination of interdiffusion coefficients for Co–Cr–Fe–Mn–Ni high-entropy alloys. J. Phase Equilib. Diffus. 38(4), 457–465 (2017)

    Article  CAS  Google Scholar 

  22. Q. Li, W. Chen, J. Zhong, L. Zhang, Q. Chen, Z.-K. Liu, On sluggish diffusion in fcc Al–Co–Cr–Fe–Ni high-entropy alloys: an experimental and numerical study. Metals 8(1), 16 (2018)

    Article  CAS  Google Scholar 

  23. R. Wang, W. Chen, J. Zhong, L. Zhang, Experimental and numerical studies on the sluggish diffusion in face centered cubic Co–Cr–Cu–Fe–Ni high-entropy alloys. J. Mater. Sci. Technol. 34(10), 1791–1798 (2018)

    Article  CAS  Google Scholar 

  24. S.Y. Chen, Q. Li, J. Zhong, F.Z. Xing, L.J. Zhang, On diffusion behaviors in face centered cubic phase of Al–Co–Cr–Fe–Ni–Ti high-entropy superalloys. J. Alloy. Compd. 791, 255–264 (2019)

    Article  CAS  Google Scholar 

  25. D. Beke, G. Erdélyi, On the diffusion in high-entropy alloys. Mater. Lett. 164, 111–113 (2016)

    Article  CAS  Google Scholar 

  26. W. Kucza, J. Dabrowa, G. Cieslak, K. Berent, T. Kulik, M. Danielewski, Studies of “sluggish diffusion” effect in Co–Cr–Fe–Mn–Ni, Co–Cr–Fe–Ni and Co–Fe–Mn–Ni high entropy alloys; determination of tracer diffusivities by combinatorial approach. J. Alloy. Compd. 731, 920–928 (2018)

    Article  CAS  Google Scholar 

  27. K. Jin, C. Zhang, F. Zhang, H.B. Bei, Influence of compositional complexity on interdiffusion in Ni-containing concentrated solid-solution alloys. Mater. Res. Lett. 6(5), 293–299 (2018)

    Article  CAS  Google Scholar 

  28. A. Mehta, Y. Sohn, High entropy and sluggish diffusion “core” effects in senary FCC Al–Co–Cr–Fe–Ni–Mn alloys. ACS Comb. Sci. 22(12), 757–767 (2020)

    Article  CAS  Google Scholar 

  29. A. Mehta, Y. Sohn, Investigation of sluggish diffusion in FCC Al0.25CoCrFeNi high-entropy alloy. Mater. Res. Lett. 9(5), 239–246 (2021)

    Article  CAS  Google Scholar 

  30. J. Dabrowa, M. Danielewski, State-of-the-art diffusion studies in the high entropy alloys. Metals 10(3), 1–8 (2020)

    Article  CAS  Google Scholar 

  31. Y.N. Osetsky, L.K. Beland, A.V. Barashev, Y.W. Zhang, On the existence and origin of sluggish diffusion in chemically disordered concentrated alloys. Curr. Opin. Solid State Mater. Sci. 22(3), 65–74 (2018)

    Article  CAS  Google Scholar 

  32. M.S. Daw, M. Chandross, Sluggish diffusion in random equimolar FCC alloys. Phys. Rev. Mater. 5(4), 043603 (2021)

    Article  CAS  Google Scholar 

  33. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004)

    Article  CAS  Google Scholar 

  34. C. Varvenne, A. Luque, W.A. Curtin, Average-atom interatomic potential for random alloys. Phys. Rev. B 93, 104201 (2016)

    Article  CAS  Google Scholar 

  35. M.S. Daw, M.I. Baskes, Embedded-atom method - derivation and application to impurities surfaces, and other defects in metals. Phys. Rev. B 29(12), 6443–6453 (1984)

    Article  CAS  Google Scholar 

  36. D. Farkas, A. Caro, Model interatomic potentials and lattice strain in a high-entropy alloy. J. Mater. Res. 33(19), 3218–3225 (2018)

    Article  CAS  Google Scholar 

  37. S. Guo, Q. Hu, C. Ng, C.T. Liu, More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase. Intermetallics 41, 96–103 (2013)

    Article  CAS  Google Scholar 

  38. Y. Mishin, D. Farkas, M.J. Mehl, D.A. Papaconstantopoulos, Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 59(5), 3393–3407 (1999)

    Article  CAS  Google Scholar 

  39. G.J. Ackland, V. Vitek, Many-body potentials and atomic-scale relaxations in noble-metal alloys. Phys. Rev. B 41(15), 10324–10333 (1990)

    Article  CAS  Google Scholar 

  40. G. Bonny, R.C. Pasianot, L. Malerba, Fitting interatomic potentials consistent with thermodynamics: Fe Cu, Ni and their alloys. Philos. Mag. 89(34–36), 3451–3464 (2009)

    Article  CAS  Google Scholar 

  41. D. Terentyev, G. Bonny, C. Domain, R.C. Pasianot, Interaction of a ½ <111> screw dislocation with Cr precipitates in bcc Fe studied by molecular dynamics. Phys. Rev. B 81(21), 1–8 (2010)

    Article  CAS  Google Scholar 

  42. G. Bonny, R.C. Pasianot, Gauge transformations to combine multi-component many-body interatomic potentials. Philos. Mag. Lett. 90(8), 559–563 (2010)

    Article  CAS  Google Scholar 

  43. G. Bonny, D. Terentyev, R.C. Pasianot, S. Ponce, A. Bakaev, Interatomic potential to study plasticity in stainless steels: the FeNiCr model alloy. Modell. Simul. Mater. Sci. Eng. 19(8), 085008 (2011)

    Article  CAS  Google Scholar 

  44. W.G. Nöhring, W.A. Curtin, Thermodynamic properties of average-atom interatomic potentials for alloys. Modell. Simul. Mater. Sci. Eng. 24(4), 045017 (2016)

    Article  CAS  Google Scholar 

  45. S. Plimpton, Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

    Article  CAS  Google Scholar 

  46. G. Henkelman, H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113(22), 9978–9985 (2000)

    Article  CAS  Google Scholar 

  47. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695–1697 (1985)

    Article  CAS  Google Scholar 

  48. M.I. Mendelev, Y. Mishin, Molecular dynamics study of self-diffusion in bcc Fe. Phys. Rev. B 80(14), 144111 (2009)

    Article  CAS  Google Scholar 

  49. G. Neumann, C. Tuijn, Self-diffusion and impurity diffusion in pure metals: handbook of experimental data (Elsevier, Amsterdam, 2011)

    Google Scholar 

  50. S. Rothman, L. Nowicki, G. Murch, Self-diffusion in austenitic Fe–Cr–Ni alloys. J. Phys. F 10(3), 383 (1980)

    Article  CAS  Google Scholar 

  51. D.B. Butrymowicz, J.R. Manning, M.E. Read, Diffusion in copper and copper alloys. Part I. volume and surface self-diffusion in copper. J. Phys. Chem. Ref. Data 2(3), 643–656 (1973)

    Article  CAS  Google Scholar 

  52. G.D. Lorenzi, F. Ercolessi, Multiple jumps and vacancy diffusion in a face-centered-cubic metal. Europhys. Lett. (EPL) 20(4), 349–355 (1992)

    Article  Google Scholar 

  53. I. Belova, G. Murch, Computer simulation of solute-enhanced diffusion kinetics in dilute fcc alloys. Philos. Mag. 83, 377–392 (2003)

    Article  CAS  Google Scholar 

  54. F. Faupel, D. Hentrich, J. Kluin, J. Wolff, A. Sager, T. Hehenkamp, Diffusion and vacancy impurity interaction in dilute fcc alloys, defect and diffusion. Forum 66–69, 573–580 (1990)

    Google Scholar 

  55. S. Divinski, O. Lukianova, G. Wilde, A. Dash, N. Esakkiraja, A. Paul, High-entropy alloys: diffusion. Encycl. Mater. (2020). https://doi.org/10.1016/B978-0-12-819726-4.11771-5

    Article  Google Scholar 

  56. M.J. Mehl, D.A. Papaconstantopoulos, Applications of a tight-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surfaces of monatomic metals. Phys. Rev. B 54(7), 4519 (1996)

    Article  CAS  Google Scholar 

  57. Y. Gong, B. Grabowski, A. Glensk, F. Körmann, J. Neugebauer, R.C. Reed, Temperature dependence of the Gibbs energy of vacancy formation of fcc Ni. Phys. Rev. B 97(21), 214106 (2018)

    Article  CAS  Google Scholar 

  58. W. Chen, X. Ding, Y. Feng, X. Liu, K. Liu, Z. Lu, D. Li, Y. Li, C. Liu, X.-Q. Chen, Vacancy formation enthalpies of high-entropy FeCoCrNi alloy via first-principles calculations and possible implications to its superior radiation tolerance. J. Mater. Sci. Technol. 34(2), 355–364 (2018)

    Article  CAS  Google Scholar 

  59. T. Angsten, T. Mayeshiba, H. Wu, D. Morgan, Elemental vacancy diffusion database from high-throughput first-principles calculations for fcc and hcp structures. New J. Phys. 16(1), 015018 (2014)

    Article  CAS  Google Scholar 

  60. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2009)

    Article  Google Scholar 

  61. Y. Osetsky, A.V. Barashev, Y. Zhang, Sluggish, chemical bias and percolation phenomena in atomic transport by vacancy and interstitial diffusion in NiFe alloys. Current Opin. Solid State Mater. Sci. 25(6), 100961 (2021)

    Article  CAS  Google Scholar 

  62. Y.-Z. Wang, Y.-J. Wang, Disentangling diffusion heterogeneity in high-entropy alloys. Acta Mater. 224, 117527 (2022)

    Article  CAS  Google Scholar 

  63. S.L. Thomas, S. Patala, Vacancy diffusion in multi-principal element alloys: The role of chemical disorder in the ordered lattice. Acta Mater. 196, 144–153 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Advanced Research Computing at Virginia Tech for providing computational resources and technical support that have contributed to the results reported within this paper. URL: https://arc.vt.edu/. AS acknowledges the support from Virginia Tech’s Institute of Critical Technologies and Applied Sciences Doctoral Scholars Program. DF acknowledges support from the National Science Foundation, Grant 1507846. XMB acknowledges the support from the National Science Foundation under Grant No. 1847780.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Farkas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seoane, A., Farkas, D. & Bai, XM. Influence of compositional complexity on species diffusion behavior in high-entropy solid-solution alloys. Journal of Materials Research 37, 1403–1415 (2022). https://doi.org/10.1557/s43578-022-00545-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00545-x

Navigation