Skip to main content

Advertisement

Log in

Negative capacitance and hysteresis in encapsulated MAPbI3 and lead–tin (Pb–Sn) perovskite solar cells

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Impedance measurements on encapsulated Pb–Sn and MAPbI3 perovskite solar cells reveal unique capacitance and hysteresis behavior. Power conversion efficiency (PCE) of Pb–Sn and MAPbI3 solar cells remains around 9% and 10% after 71 and 51 days, respectively. Trap density and trap energy of around 1016 cm−3 and 0.45 eV were observed in Pb–Sn perovskite solar cells and around 1016 cm−3 and 0.13 eV for the MAPbI3 solar cell. The origin of negative capacitance was analyzed by impedance spectroscopy and an equivalent circuit based on the surface polarization model was used to extract transport parameters. The electric field within the depletion region, diffusion coefficient, diffusion length, mobility of ions, diffusion, and drift of mobile ions were calculated. We found that the negative capacitance behavior is directly related to the aging of perovskite samples. The results of impedance spectroscopy on PSC can be explained by a simple model of diffusion-controlled hysteresis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

All data and materials will be provided upon request.

Code availability

Not applicable.

References

  1. M. Abdi-Jalebi, M.I. Dar, S.P. Senanayak, A. Sadhanala, Z. Andaji-Garmaroudi, L.M. Pazos-Outón, J.M. Richter, A.J. Pearson, H. Sirringhaus, M. Grätzel, R.H. Friend, Charge extraction via graded doping of hole transport layers gives highly luminescent and stable metal halide perovskite devices. Sci. Adv. 5, 1–10 (2019)

    Article  CAS  Google Scholar 

  2. S.M. Abdulrahim, Z. Ahmad, J. Bhadra, N.J. Al-Thani, Long-term stability analysis of 3D and 2D/3D hybrid perovskite solar cells using electrochemical impedance spectroscopy. Molecules 25, 5794 (2020)

    Article  CAS  Google Scholar 

  3. M.L. Agiorgousis, Y.Y. Sun, H. Zeng, S. Zhang, Strong covalency-induced recombination centers in perovskite solar cell material CH3NH3PbI3. J. Am. Chem. Soc. 136, 14570–14575 (2014)

    Article  CAS  Google Scholar 

  4. S. Aharon, S. Gamliel, B. El Cohen, L. Etgar, Depletion region effect of highly efficient hole conductor free CH 3NH3PbI3 perovskite solar cells. Phys. Chem. Chem. Phys. 16, 10512–10518 (2014)

    Article  CAS  Google Scholar 

  5. O. Almora, C. Aranda, E. Mas-Marzá, G. Garcia-Belmonte, On Mott-Schottky analysis interpretation of capacitance measurements in organometal perovskite solar cells. Appl. Phys. Lett. 109, 173903 (2016)

    Article  CAS  Google Scholar 

  6. O. Almora, M. García-Batlle, G. Garcia-Belmonte, Utilization of temperature-sweeping capacitive techniques to evaluate band gap defect densities in photovoltaic perovskites. J. Phys. Chem. Lett. 10, 3661–3669 (2019)

    Article  CAS  Google Scholar 

  7. O. Almora, I. Zarazua, E. Mas-Marza, I. Mora-Sero, J. Bisquert, G. Garcia-Belmonte, Capacitive dark currents, hysteresis, and electrode polarization in lead halide perovskite solar cells. J. Phys. Chem. Lett. 6, 1645–1652 (2015)

    Article  CAS  Google Scholar 

  8. A.O. Alvarez, R. Arcas, C.A. Aranda, L. Bethencourt, E. Mas-Marzá, M. Saliba, F. Fabregat-Santiago, Negative capacitance and inverted hysteresis: matching features in perovskite solar cells. J. Phys. Chem. Lett. 11, 8417–8423 (2020)

    Article  CAS  Google Scholar 

  9. C. Aranda, J. Bisquert, A. Guerrero, Impedance spectroscopy of perovskite/contact interface: beneficial chemical reactivity effect. J. Chem. Phys. 151, 124201 (2019)

    Article  CAS  Google Scholar 

  10. T.T. Ava, A. Al Mamun, S. Marsillac, G. Namkoong, A review: thermal stability of methylammonium lead halide based perovskite solar cells. Appl. Sci. 9, 188 (2019)

    Article  CAS  Google Scholar 

  11. R. Azmi, N. Nurrosyid, S.-H. Lee, M. Al Mubarok, W. Lee, S. Hwang, W. Yin, T.K. Ahn, T.-W. Kim, D.Y. Ryu, Y.R. Do, S.-Y. Jang, Shallow and deep trap state passivation for low-temperature processed perovskite solar cells. ACS Energy Lett. 5, 1396–1403 (2020)

    Article  CAS  Google Scholar 

  12. J.M. Ball, A. Petrozza, Defects in perovskite-halides and their effects in solar cells. Nat. Energy. 1, 16149 (2016)

    Article  CAS  Google Scholar 

  13. J. Bisquert, A. Guerrero, C. Gonzales, Theory of hysteresis in halide perovskites by integration of the equivalent circuit. ACS Phys. Chem. Au. 1, 25–44 (2021)

    Article  CAS  Google Scholar 

  14. C. Blauth, P. Mulvaney, T. Hirai, Negative capacitance as a diagnostic tool for recombination in purple quantum dot LEDs. J. Appl. Phys. 125, 195501 (2019)

    Article  CAS  Google Scholar 

  15. A. Bou, A. Pockett, D. Raptis, T. Watson, M.J. Carnie, J. Bisquert, beyond impedance spectroscopy of perovskite solar cells: insights from the spectral correlation of the electrooptical frequency techniques. J. Phys. Chem. Lett. 11, 8654–8659 (2020)

    Article  CAS  Google Scholar 

  16. R. Brakkee, R.M. Williams, Minimizing defect states in lead halide perovskite solar cell materials. Appl. Sci. 10, 3061 (2020)

    Article  CAS  Google Scholar 

  17. B. Chen, M. Yang, X. Zheng, C. Wu, W. Li, Y. Yan, J. Bisquert, G. Garcia-Belmonte, K. Zhu, S. Priya, Impact of capacitive effect and ion migration on the hysteretic behavior of perovskite solar cells. J. Phys. Chem. Lett. 6, 4693–4700 (2015)

    Article  CAS  Google Scholar 

  18. Y. Chen, H. Zhou, Defects chemistry in high-efficiency and stable perovskite solar cells. J. Appl. Phys. 128, 060903 (2020)

    Article  CAS  Google Scholar 

  19. M.S. Chowdhury, S.A. Shahahmadi, P. Chelvanathan, S.K. Tiong, N. Amin, K. Techato, N. Nuthammachot, T. Chowdhury, M. Suklueng, Effect of deep-level defect density of the absorber layer and n/i interface in perovskite solar cells by SCAPS-1D. Results Phys. 16, 102839 (2020)

    Article  Google Scholar 

  20. L. Contreras-Bernal, S. Ramos-Terrón, A. Riquelme, P.P. Boix, J. Idígoras, I. Mora-Seró, J.A. Anta, Impedance analysis of perovskite solar cells: a case study. J. Mater. Chem. A. 7, 12191–12200 (2019)

    Article  CAS  Google Scholar 

  21. J.P. Correa-Baena, W. Tress, K. Domanski, E.H. Anaraki, S.H. Turren-Cruz, B. Roose, P.P. Boix, M. Grätzel, M. Saliba, A. Abate, A. Hagfeldt, Identifying and suppressing interfacial recombination to achieve high open-circuit voltage in perovskite solar cells. Energy Environ. Sci. 10, 1207–1212 (2017)

    Article  CAS  Google Scholar 

  22. K. Domanski, B. Roose, T. Matsui, M. Saliba, S.H. Turren-Cruz, J.P. Correa-Baena, C.R. Carmona, G. Richardson, J.M. Foster, F. De Angelis, J.M. Ball, A. Petrozza, N. Mine, M.K. Nazeeruddin, W. Tress, M. Grätzel, U. Steiner, A. Hagfeldt, A. Abate, Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy Environ. Sci. 10, 604–613 (2017)

    Article  CAS  Google Scholar 

  23. A. Dualeh, T. Moehl, N. Te, Impedance spectroscopy analysis of lead iodide perovskite-sensitized solid-state solar cells. ACS Nano 8, 362–373 (2014)

    Article  CAS  Google Scholar 

  24. C. Eames, J.M. Frost, P.R.F. Barnes, B.C. O’Regan, A. Walsh, M.S. Islam, Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015)

    Article  CAS  Google Scholar 

  25. F. Ebadi, N. Taghavinia, R. Mohammadpour, A. Hagfeldt, W. Tress, Origin of apparent light-enhanced and negative capacitance in perovskite solar cells. Nat. Commun. 10, 1–9 (2019)

    Article  CAS  Google Scholar 

  26. N. Espinosa, L. Serrano-Luján, A. Urbina, F.C. Krebs, Solution and vapour deposited lead perovskite solar cells: ecotoxicity from a life cycle assessment perspective. Sol. Energy Mater. Sol. Cells 137, 303–310 (2015)

    Article  CAS  Google Scholar 

  27. J. Euvrard, Y. Yan, D.B. Mitzi, Electrical doping in halide perovskites. Nat. Rev. Mater. 6, 531–549 (2021)

    Article  CAS  Google Scholar 

  28. F. Fabregat-Santiago, M. Kulbak, A. Zohar, M. Vallés-Pelarda, G. Hodes, D. Cahen, I. Mora-Seró, Deleterious effect of negative capacitance on the performance of halide perovskite solar cells. ACS Energy Lett. 2, 2007–2013 (2017)

    Article  CAS  Google Scholar 

  29. L.-F. Feng, K. Zhao, H.-T. Dai, S.-G. Wang, X.-W. Sun, Charge recombination mechanism to explain the negative capacitance in dye-sensitized solar cells. Chin. Phys. B 25, 037307 (2016)

    Article  CAS  Google Scholar 

  30. W. Franks, I. Schenker, P. Schmutz, A. Hierlemann, Impedance characterization and modeling of electrodes for biomedical applications. IEEE Trans. Biomed. Eng. 52, 1295–1302 (2005)

    Article  Google Scholar 

  31. L. Fu, H. Li, L. Wang, R. Yin, B. Li, L. Yin, Defect passivation strategies in perovskites for an enhanced photovoltaic performance. Energy Environ. Sci. 13, 4017–4056 (2020)

    Article  CAS  Google Scholar 

  32. M.H. Futscher, M.K. Gangishetty, D.N. Congreve, B. Ehrler, Quantifying mobile ions and electronic defects in perovskite-based devices with temperature-dependent capacitance measurements: frequency vs time domain. J. Chem. Phys. 152, 044202 (2020)

    Article  CAS  Google Scholar 

  33. R. García-Rodríguez, D. Ferdani, S. Pering, P.J. Baker, P.J. Cameron, Influence of bromide content on iodide migration in inverted MAPb(I1-: XBrx)3 perovskite solar cells. J. Mater. Chem. A. 7, 22604–22614 (2019)

    Article  Google Scholar 

  34. E. Ghahremanirad, A. Bou, S. Olyaee, J. Bisquert, Inductive loop in the impedance response of perovskite solar cells explained by surface polarization model. J. Phys. Chem. Lett. 8, 1402–1406 (2017)

    Article  CAS  Google Scholar 

  35. F. Giordano, A. Abate, J.P. Correa Baena, M. Saliba, T. Matsui, S.H. Im, S.M. Zakeeruddin, M.K. Nazeeruddin, A. Hagfeldt, M. Graetzel, Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat. Commun. 7, 10379 (2016)

    Article  CAS  Google Scholar 

  36. D. Di Girolamo, F. Matteocci, F.U. Kosasih, G. Chistiakova, W. Zuo, G. Divitini, L. Korte, C. Ducati, A. Di Carlo, D. Dini, A. Abate, Stability and dark hysteresis correlate in NiO-based perovskite solar cells. Adv. Energy Mater. 9, 1–10 (2019)

    Article  CAS  Google Scholar 

  37. E. Guillén, F.J. Ramos, J.A. Anta, S. Ahmad, Elucidating transport-recombination mechanisms in perovskite solar cells by small-perturbation techniques. J. Phys. Chem. C. 118, 22913–22922 (2014)

    Article  CAS  Google Scholar 

  38. B. Hailegnaw, N.S. Sariciftci, M.C. Scharber, Impedance spectroscopy of perovskite solar cells: studying the dynamics of charge carriers before and after continuous operation. Phys. Status Solidi Appl. Mater. Sci. 217, 1–8 (2020)

    Google Scholar 

  39. E. Von Hauff, Impedance spectroscopy for emerging photovoltaics. J. Phys. Chem. C. 123, 11329–11346 (2019)

    Article  CAS  Google Scholar 

  40. S.S. Hegedus, E.A. Fagen, Midgap states in a -Si: H and a -SiGe: H p - i - n solar cells and Schottky junctions by capacitance techniques. J. Appl. Phys. 71, 5941–5951 (1992)

    Article  CAS  Google Scholar 

  41. T. Heiser, A. Mesli, Determination of the copper diffusion coefficient in silicon from transient ion-drift. Appl Phys A. 328, 325–328 (1993)

    Article  Google Scholar 

  42. T. Heiser, E. Weber, Transient ion-drift-induced capacitance signals in semiconductors. Phys. Rev. B 58, 3893–3903 (1998)

    Article  CAS  Google Scholar 

  43. D.H. Kang, N.G. Park, On the current–voltage hysteresis in perovskite solar cells: dependence on perovskite composition and methods to remove hysteresis. Adv. Mater. 31, 1–23 (2019)

    Article  Google Scholar 

  44. W. Ke, C. Xiao, C. Wang, B. Saparov, H.S. Duan, D. Zhao, Z. Xiao, P. Schulz, S.P. Harvey, W. Liao, W. Meng, Y. Yu, A.J. Cimaroli, C.S. Jiang, K. Zhu, M. Al-Jassim, G. Fang, D.B. Mitzi, Y. Yan, Employing lead thiocyanate additive to reduce the hysteresis and boost the fill factor of planar perovskite solar cells. Adv. Mater. 28, 5214–5221 (2016)

    Article  CAS  Google Scholar 

  45. M.T. Khan, P. Huang, A. Almohammedi, S. Kazim, S. Ahmad, Mechanistic origin and unlocking of negative capacitance in perovskites solar cells. IScience 24, 102024 (2021)

    Article  CAS  Google Scholar 

  46. S. Khelifi, K. Decock, J. Lauwaert, H. Vrielinck, D. Spoltore, F. Piersimoni, J. Manca, A. Belghachi, M. Burgelman, Investigation of defects by admittance spectroscopy measurements in poly (3-hexylthiophene):(6,6)-phenyl C 61 -butyric acid methyl ester organic solar cells degraded under air exposure. J. Appl. Phys. 110, 094509 (2011)

    Article  CAS  Google Scholar 

  47. D. Kim, E.S. Muckley, N. Creange, T.H. Wan, M.H. Ann, E. Quattrocchi, R.K. Vasudevan, J.H. Kim, F. Ciucci, I.N. Ivanov, S.V. Kalinin, M. Ahmadi, Exploring transport behavior in hybrid perovskites solar cells via machine learning analysis of environmental-dependent impedance spectroscopy. Adv. Sci. 8, 1–12 (2021)

    Article  CAS  Google Scholar 

  48. D. Kim, J.S. Yun, P. Sharma, D.S. Lee, J. Kim, A.M. Soufiani, S. Huang, M.A. Green, A.W.Y. Ho-Baillie, J. Seidel, Light- and bias-induced structural variations in metal halide perovskites. Nat. Commun. 10, 1–9 (2019)

    CAS  Google Scholar 

  49. H.S. Kim, N.G. Park, Parameters affecting I-V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer. J. Phys. Chem. Lett. 5, 2927–2934 (2014)

    Article  CAS  Google Scholar 

  50. J. Kim, C.H. Chung, K.H. Hong, Understanding of the formation of shallow level defects from the intrinsic defects of lead tri-halide perovskites. Phys. Chem. Chem. Phys. 18, 27143–27147 (2016)

    Article  CAS  Google Scholar 

  51. T. Kirchartz, W. Gong, S.A. Hawks, T. Agostinelli, R.C.I. MacKenzie, Y. Yang, J. Nelson, Sensitivity of the mott-schottky analysis in organic solar cells. J. Phys. Chem. C. 116, 7672–7680 (2012)

    Article  CAS  Google Scholar 

  52. D. Klotz, Negative capacitance or inductive loop?—A general assessment of a common low frequency impedance feature. Electrochem. Commun. 98, 58–62 (2019)

    Article  CAS  Google Scholar 

  53. J.P. Korb, N. Vorapalawut, B. Nicot, R.G. Bryant, Relation and correlation between NMR relaxation times, diffusion coefficients, and viscosity of heavy crude oils. J. Phys. Chem. C. 119, 24439–24446 (2015)

    Article  CAS  Google Scholar 

  54. G. Landi, H.C. Neitzert, C. Barone, C. Mauro, F. Lang, S. Albrecht, B. Rech, S. Pagano, Correlation between electronic defect states distribution and device performance of perovskite solar cells. Adv. Sci. 4, 1700183 (2017)

    Article  CAS  Google Scholar 

  55. T. Leijtens, G.E. Eperon, A.J. Barker, G. Grancini, W. Zhang, J.M. Ball, A.R.S. Kandada, H.J. Snaith, A. Petrozza, Carrier trapping and recombination: the role of defect physics in enhancing the open circuit voltage of metal halide perovskite solar cells. Energy Environ. Sci. 9, 3472–3481 (2016)

    Article  CAS  Google Scholar 

  56. Y. Li, M. Dailey, P.J. Lohr, A.D. Printz, Performance and stability improvements in metal halide perovskite with intralayer incorporation of organic additives. J. Mater. Chem. A. 9, 16281–16338 (2021)

    Article  CAS  Google Scholar 

  57. W. Liao, D. Zhao, Y. Yu, N. Shrestha, K. Ghimire, C.R. Grice, C. Wang, Y. Xiao, A.J. Cimaroli, R.J. Ellingson, N.J. Podraza, K. Zhu, R.G. Xiong, Y. Yan, Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. J. Am. Chem. Soc. 138, 12360–12363 (2016)

    Article  CAS  Google Scholar 

  58. P. Liu, W. Wang, S. Liu, H. Yang, Z. Shao, Fundamental understanding of photocurrent hysteresis in perovskite solar cells. Adv. Energy Mater. 9, 1–33 (2019)

    Google Scholar 

  59. C. Lungenschmied, E. Ehrenfreund, N.S. Sariciftci, Negative capacitance and its photo-inhibition in organic bulk heterojunction devices. Org. Electron. 10, 115–118 (2009)

    Article  CAS  Google Scholar 

  60. A. Mahapatra, N. Parikh, P. Kumar, M. Kumar, D. Prochowicz, A. Kalam, M.M. Tavakoli, P. Yadav, Changes in the electrical characteristics of perovskite solar cells with aging time. Molecules 25, 1–10 (2020)

    Article  CAS  Google Scholar 

  61. S. Mahesh, J.M. Ball, R.D.J. Oliver, D.P. McMeekin, P.K. Nayak, M.B. Johnston, H.J. Snaith, Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy Environ. Sci. 13, 258–267 (2020)

    Article  CAS  Google Scholar 

  62. K. Miyano, M. Yanagida, N. Tripathi, Y. Shirai, Simple characterization of electronic processes in perovskite photovoltaic cells. Appl. Phys. Lett. 106, 093903 (2015)

    Article  CAS  Google Scholar 

  63. G.A. Nemnes, C. Besleaga, A.G. Tomulescu, I. Pintilie, L. Pintilie, K. Torfason, A. Manolescu, Dynamic electrical behavior of halide perovskite based solar cells. Sol. Energy Mater. Sol. Cells. 159, 197–203 (2017)

    Article  CAS  Google Scholar 

  64. G.R. Neupane, P. Hari, Role of polyvinylpyrrolidone (PVP) on controlling the structural, optical, and electrical properties of vanadium pentoxide (V2O5) nanoparticles. ChemistrySelect 5, 11596–11607 (2020)

    Article  CAS  Google Scholar 

  65. G.R. Neupane, A. Kaphle, P. Hari, Microwave-assisted Fe-doped ZnO nanoparticles for enhancement of silicon solar cell efficiency. Sol. Energy Mater. Sol. Cells. 201, 110073 (2019)

    Article  CAS  Google Scholar 

  66. M. Nobert, Determination of the diffusion coefficient of ionic species in Boom Clay by electromigration, 1997.

  67. L.K. Ono, S.R. Raga, M. Remeika, A.J. Winchester, A. Gabe, Y. Qi, Pinhole-free hole transport layers significantly improve the stability of MAPbI 3 -based perovskite solar cells under operating conditions. J. Mater. Chem. A. 3, 15451–15456 (2015)

    Article  CAS  Google Scholar 

  68. A. Palici, G.A. Nemnes, C. Besleaga, L. Pintilie, D.-V. Anghel, I. Pintilie, A. Manolescu, The influence of the relaxation time on the dynamic hysteresis in perovskite solar cells. EPJ Web Conf. 173, 03017 (2018)

    Article  CAS  Google Scholar 

  69. L.M. Pazos-Outón, T.P. Xiao, E. Yablonovitch, Fundamental efficiency limit of lead iodide perovskite solar cells. J. Phys. Chem. Lett. 9, 1703–1711 (2018)

    Article  CAS  Google Scholar 

  70. D. Prochowicz, M.M. Tavakoli, A. Solanki, T.W. Goh, T.C. Sum, P. Yadav, Correlation of recombination and open circuit voltage in planar heterojunction perovskite solar cells. J. Mater. Chem. C 7, 1273–1279 (2019)

    Article  CAS  Google Scholar 

  71. P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M.K. Nazeeruddin, M. Grätzel, Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun. 5, 3834 (2014)

    Article  CAS  Google Scholar 

  72. G.A. Ragoisha, A.S. Bondarenko, Potentiodynamic electrochemical impedance spectroscopy. Electrochim. Acta 50, 1553–1563 (2005)

    Article  CAS  Google Scholar 

  73. S. Ravishankar, O. Almora, C. Echeverría-Arrondo, E. Ghahremanirad, C. Aranda, A. Guerrero, F. Fabregat-Santiago, A. Zaban, G. Garcia-Belmonte, J. Bisquert, Surface polarization model for the dynamic hysteresis of perovskite solar cells. J. Phys. Chem. Lett. 8, 915–921 (2017)

    Article  CAS  Google Scholar 

  74. A. Riquelme, L.J. Bennett, N.E. Courtier, M.J. Wolf, L. Contreras-Bernal, A.B. Walker, G. Richardson, J.A. Anta, Identification of recombination losses and charge collection efficiency in a perovskite solar cell by comparing impedance response to a drift-diffusion model. Nanoscale 12, 17385–17398 (2020)

    Article  CAS  Google Scholar 

  75. M.S. Salem, A. Shaker, A. Zekry, M. Abouelatta, A. Alanazi, M.T. Alshammari, C. Gontand, Analysis of hybrid hetero-homo junction lead-free perovskite solar cells by SCAPS simulator. Energies 14, 5741 (2021)

    Article  CAS  Google Scholar 

  76. R.S. Sanchez, V. Gonzalez-Pedro, J.-W. Lee, N.-G. Park, Y.S. Kang, I. Mora-Sero, J. Bisquert, Slow dynamic processes in lead halide perovskite solar cells. Characteristic times and hysteresis. J. Phys. Chem. Lett. 5, 2357–2363 (2014)

    Article  CAS  Google Scholar 

  77. O.J. Sandberg, J. Kurpiers, M. Stolterfoht, D. Neher, P. Meredith, S. Shoaee, A. Armin, On the question of the need for a built-in potential in perovskite solar cells. Adv. Mater. Interfaces 7, 2000041 (2020)

    Article  CAS  Google Scholar 

  78. A. Senocrate, I. Moudrakovski, T. Acartürk, R. Merkle, G.Y. Kim, U. Starke, M. Grätzel, J. Maier, Slow CH3NH3+ diffusion in CH3NH3PbI3 under light measured by solid-state NMR and tracer diffusion. J. Phys. Chem. C. 122, 21803–21806 (2018)

    Article  CAS  Google Scholar 

  79. T.S. Sherkar, C. Momblona, L. Gil-Escrig, J. Ávila, M. Sessolo, H.J. Bolink, L.J.A. Koster, Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions. ACS Energy Lett. 2, 1214–1222 (2017)

    Article  CAS  Google Scholar 

  80. S.D. Stranks, V.M. Burlakov, T. Leijtens, J.M. Ball, A. Goriely, H.J. Snaith, Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states. Phys. Rev. Appl. 2, 1–8 (2014)

    Article  CAS  Google Scholar 

  81. A. Walsh, S.D. Stranks, Taking control of ion transport in halide perovskite solar cells. ACS Energy Lett. 3, 1983–1990 (2018)

    Article  CAS  Google Scholar 

  82. T. Walter, R. Herberholz, C. Müller, H.W. Schock, Determination of defect distributions from admittance measurements and application to Cu(In, Ga)Se2 based heterojunctions. J. Appl. Phys. 80, 4411–4420 (1996)

    Article  CAS  Google Scholar 

  83. F. Wu, R. Pathak, K. Chen, G. Wang, B. Bahrami, W.-H. Zhang, Q. Qiao, Inverted current–voltage hysteresis in perovskite solar cells. ACS Energy Lett. 3, 2457–2460 (2018)

    Article  CAS  Google Scholar 

  84. C. Yang, X. Shan, T. Xie, Insights of hysteresis behaviors in perovskite solar cells from a mixed drift-diffusion model coupled with recombination. Photonics 7, 47 (2020)

    Article  CAS  Google Scholar 

  85. S.M. Yoo, S.J. Yoon, J.A. Anta, H.J. Lee, P.P. Boix, I. Mora-Seró, An equivalent circuit for perovskite solar cell bridging sensitized to thin film architectures. Joule. 3, 2535–2549 (2019)

    Article  CAS  Google Scholar 

  86. Y. Yuan, J. Chae, Y. Shao, Q. Wang, Z. Xiao, A. Centrone, J. Huang, Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Adv. Energy Mater. 5, 1–7 (2015)

    Article  Google Scholar 

  87. I. Zarazúa, S. Sidhik, T. Lopéz-Luke, D. Esparza, E. De La Rosa, J. Reyes-Gomez, I. Mora-Seró, G. Garcia-Belmonte, Operating mechanisms of mesoscopic perovskite solar cells through impedance spectroscopy and J-V modeling. J. Phys. Chem. Lett. 8, 6073–6079 (2017)

    Article  CAS  Google Scholar 

  88. E. Zimmermann, K.K. Wong, M. Müller, H. Hu, P. Ehrenreich, M. Kohlstädt, U. Würfel, S. Mastroianni, G. Mathiazhagan, A. Hinsch, T.P. Gujar, M. Thelakkat, T. Pfadler, L. Schmidt-Mende, Characterization of perovskite solar cells: towards a reliable measurement protocol. APL Mater. 4, 091901 (2016)

    Article  CAS  Google Scholar 

  89. A. Zohar, N. Kedem, I. Levine, D. Zohar, A. Vilan, D. Ehre, G. Hodes, D. Cahen, Impedance spectroscopic indication for solid state electrochemical reaction in (CH3NH3)PbI3 films. J. Phys. Chem. Lett. 7, 191–197 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Aeronautics and Space Administration under Agreement No 80NSSC19M0140 issued through NASA Oklahoma EPSCoR. The authors would also like to thank The University of Tulsa for financial support and Rusiri Rathnasekara, Grant Mayberry, and James Brenner for their help and support.

Funding

NASA EPSCoR Agreement No 80NSSC19M0140 (Grant No. NASA EPSCoR 14-2-1205324) and The University of Tulsa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parameswar Hari.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1511 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neupane, G.R., Bamidele, M., Yeddu, V. et al. Negative capacitance and hysteresis in encapsulated MAPbI3 and lead–tin (Pb–Sn) perovskite solar cells. Journal of Materials Research 37, 1357–1372 (2022). https://doi.org/10.1557/s43578-022-00540-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00540-2

Keywords

Navigation