Skip to main content
Log in

Flexible thin-film photodetectors based on solution-processed molybdenum disulphide nanosheets

Journal of Materials Research Aims and scope Submit manuscript

Abstract

Implementing two dimensional materials as an active layer in flexible photodetectors has gained interest due to their high mechanical flexibility and excellent optoelectronic properties. Here, we demonstrate a high-performance flexible photodetector based on liquid-phase exfoliated MoS2 nanosheets (NSs), exhibiting fast and stable performance under ambient conditions. The obtained NSs have a lateral size of hundreds of nanometres, an average thickness of ~ 3 nm and high crystallinity in the semiconducting 2H phase. The devices show stable current–time (It) characteristics under pulsed illumination with the transient rise and decay time constant around 135 µs. The devices exhibit excellent omnidirectional light detection capabilities for wide incident angles ranging from 0° to 70°. It also shows a non-linear dependence on incident intensity with a power-law exponent of 0.75, indicating defect-assisted trapping of photo-generated charge carriers. Efficient photoresponse is observed in MoS2 NSs-based flexible photodetectors with different radii and repeated bending.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Data availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  1. G. Konstantatos et al., Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states. Nano Lett. 8(5), 1446–1450 (2008)

    Article  CAS  Google Scholar 

  2. C. Tan et al., A self-powered photovoltaic photodetector based on a lateral WSe2–WSe2 homojunction. ACS Appl. Mater. Interfaces. 12(40), 44934–44942 (2020)

    Article  CAS  Google Scholar 

  3. W. Ouyang et al., Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering. Adv. Func. Mater. 29(9), 1807672 (2019)

    Article  Google Scholar 

  4. H. Xu et al., Flexible SnSe photodetectors with ultrabroad spectral response up to 10.6 μm enabled by photobolometric effect. ACS Appl. Mater. Interfaces 12(31), 35250–35258 (2020)

    Article  CAS  Google Scholar 

  5. A. Numan et al., Photochemical reactivity of sulfamethoxazole and other sulfa compounds with photodiode array detection. Microchem. J. 72(2), 147–154 (2002)

    Article  CAS  Google Scholar 

  6. H. Fang, W. Hu, Photogating in low dimensional photodetectors. Adv. Sci. 4(12), 1700323 (2017)

    Article  Google Scholar 

  7. W. Gao et al., Flexible electronics toward wearable sensing. Acc. Chem. Res. 52(3), 523–533 (2019)

    Article  CAS  Google Scholar 

  8. Z. Wang et al., Flexible electronics and healthcare applications. Front. Nanotechnol. (2021). https://doi.org/10.3389/fnano.2021.625989

    Article  Google Scholar 

  9. M. Sugita, K. Uehara, S. Kubota, Flexible security systems and a new structure for electronic commerce on software radio, in Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conference (Cat. No.00CH37152). (IEEE, Boston, 2000)

    Google Scholar 

  10. Y. Yang, Z.D. Deng, Stretchable sensors for environmental monitoring. Appl. Phys. Rev. 6(1), 011309 (2019)

    Article  Google Scholar 

  11. H. Jiang et al., Two-dimensional materials: From mechanical properties to flexible mechanical sensors. InfoMat 2(6), 1077–1094 (2020)

    Article  CAS  Google Scholar 

  12. Y. Li et al., Mapping the elastic properties of two-dimensional MoS2 via bimodal atomic force microscopy and finite element simulation. NPJ Comput. Mater. 4(1), 49 (2018)

    Article  Google Scholar 

  13. J. Kang, H. Sahin, F.M. Peeters, Mechanical properties of monolayer sulphides: a comparative study between MoS2, HfS2 and TiS3. Phys. Chem. Chem. Phys. 17(41), 27742–27749 (2015)

    Article  CAS  Google Scholar 

  14. R. Ganatra, Q. Zhang, Few-layer MoS2: a promising layered semiconductor. ACS Nano 8(5), 4074–4099 (2014)

    Article  CAS  Google Scholar 

  15. O. Lopez-Sanchez et al., Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8(7), 497–501 (2013)

    Article  CAS  Google Scholar 

  16. W. Zhang et al., High-gain phototransistors based on a CVD MoS2 monolayer. Adv. Mater. 25(25), 3456–3461 (2013)

    Article  CAS  Google Scholar 

  17. A. Zobel et al., Chemical vapour deposition and characterization of uniform bilayer and trilayer MoS2 crystals. J. Mater. Chem. C 4(47), 11081–11087 (2016)

    Article  CAS  Google Scholar 

  18. Y. Huang et al., Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 11(1), 2453 (2020)

    Article  CAS  Google Scholar 

  19. A. Ambrosi, M. Pumera, Electrochemical exfoliation of MoS2 crystal for hydrogen electrogeneration. Chem. Eur. J. 24(69), 18551–18555 (2018)

    Article  CAS  Google Scholar 

  20. A. Jawaid et al., Mechanism for liquid phase exfoliation of MoS2. Chem. Mater. 28(1), 337–348 (2016)

    Article  CAS  Google Scholar 

  21. Y. Hernandez et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563–568 (2008)

    Article  CAS  Google Scholar 

  22. D. Sahoo et al., Cost effective liquid phase exfoliation of MoS2 nanosheets and photocatalytic activity for wastewater treatment enforced by visible light. Sci. Rep. 10(1), 10759 (2020)

    Article  CAS  Google Scholar 

  23. Y. Zhang et al., On valence-band splitting in layered MoS2. ACS Nano 9(8), 8514–8519 (2015)

    Article  CAS  Google Scholar 

  24. P. Makuła, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J. Phys. Chem. Lett. 9(23), 6814–6817 (2018)

    Article  Google Scholar 

  25. J. Zhu et al., Thickness-dependent bandgap tunable molybdenum disulfide films for optoelectronics. RSC Adv. 6(112), 110604–110609 (2016)

    Article  CAS  Google Scholar 

  26. B. Feng et al., The effect of crystallinity on compressive properties of Al-PTFE. Polymers 8(10), 356 (2016)

    Article  Google Scholar 

  27. Y.A. Lebedev et al., X-ray powder diffraction study of polytetrafluoroethylene. Crystallogr. Rep. 55(4), 609–614 (2010)

    Article  CAS  Google Scholar 

  28. B.P. Majee, V. Srivastava, A.K. Mishra, Surface-enhanced raman scattering detection based on an interconnected network of vertically oriented semiconducting few-layer MoS2 nanosheets. ACS Appl. Nano Mater. 3(5), 4851–4858 (2020)

    Article  CAS  Google Scholar 

  29. A. Gul et al., Theoretical and experimental investigation of conjugation of 1,6-hexanedithiol on MoS2. Mater. Res. Express 5(3), 036415 (2018)

    Article  Google Scholar 

  30. B. Radisavljevic et al., Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011)

    Article  CAS  Google Scholar 

  31. D. Lembke, A. Kis, Breakdown of high-performance monolayer MoS2 transistors. ACS Nano 6(11), 10070–10075 (2012)

    Article  CAS  Google Scholar 

  32. V.K. Pulikodan et al., Photoresponse of solution-processed molybdenum disulfide nanosheet-based photodetectors. ACS Appl. Nano Mater. 3(10), 10057–10066 (2020)

    Article  CAS  Google Scholar 

  33. R.H. Bube, Photoconductivity of solids (R.E. Krieger Pub. Co., Huntington, 1978)

    Google Scholar 

  34. J.A. McLaughlin et al., Thin film flexible electrodes based on gold/polytetrafluoroethylene layers, in Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. (IEEE, Amsterdam, 1996)

    Google Scholar 

  35. J.-E. Lee, H.-K. Kim, Self-cleanable, waterproof, transparent, and flexible Ag networks covered by hydrophobic polytetrafluoroethylene for multi-functional flexible thin film heaters. Sci. Rep. 9(1), 16723 (2019)

    Article  Google Scholar 

  36. Y.-Y. Zhang et al., Durable superhydrophobic PTFE films through the introduction of micro- and nanostructured pores. Appl. Surf. Sci. 339, 151–157 (2015)

    Article  CAS  Google Scholar 

  37. S. Bertolazzi, J. Brivio, A. Kis, Stretching and breaking of ultrathin MoS2. ACS Nano 5(12), 9703–9709 (2011)

    Article  CAS  Google Scholar 

  38. A. Castellanos-Gomez et al., Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 24(6), 772–775 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

V.K.P. thanks the Council of Scientific and Industrial Research (CSIR), India, and RM thanks the University Grants Commission (UGC), India, for financial support. The authors acknowledge financial support from Scheme for Transformational and Advanced Research in Sciences (STARS) (sanction order STARS/APR2019/PS/308/FS) funded by the Ministry of Education (Government of India) and the Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Kerala, India.

Funding

Scheme for Transformational and Advanced Research in Sciences (STARS) funded by the Ministry of Education (Government of India), (sanction order STARS/APR2019/PS/308/FS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj A. G. Namboothiry.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 503 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pulikodan, V.K., Muhammed, R., Joseph, A. et al. Flexible thin-film photodetectors based on solution-processed molybdenum disulphide nanosheets. Journal of Materials Research 37, 1246–1255 (2022). https://doi.org/10.1557/s43578-022-00531-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00531-3

Keywords

Navigation