Skip to main content
Log in

Density functional study of Ga intercalation at graphene/SiC heterointerface

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The intercalation technique has harnessed tremendous attention in the 2D materials’ community, enabling to fabricate atomically thin and stable non-layered materials such as Ga at the heterointerface of graphene/SiC. However, the atomistic mechanism of the metal intercalation at such interface has still yet to been understood. In this study, first-principles calculations provide a thermodynamic and kinetic level understanding of the Ga penetration into and nucleation at the SiC/graphene interface. A Ga atom encapsulated at the graphene/SiC interface is thermodynamically more stable than adsorbed on the top of the graphene layer, signifying the necessity of exploiting the SiC substrate during the 2D Ga growth to facilitate the Ga migration into the SiC/graphene interface. Additionally, the sizes of a Ga atom and vacancy defect are critical to the Ga penetration through graphene, affecting the thermodynamic and kinetic preference of a Ga atom between the adsorption on graphene or the intercalation in to the SiC/graphene gallery.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The data are available upon reasonable request from the corresponding author (N.N.).

References

  1. S. Chabi, K. Kadel, Two-dimensional silicon carbide: emerging direct band gap semiconductor. Nanomaterials (2020). https://doi.org/10.3390/nano10112226

    Article  Google Scholar 

  2. A. Zavabeti, A. Jannat, L. Zhong, A.A. Haidry, Z. Yao, J.Z. Ou, Two-dimensional materials in large-areas: synthesis, properties and applications. Nano-Micro Lett. 12(1), 66 (2020). https://doi.org/10.1007/s40820-020-0402-x

    Article  CAS  Google Scholar 

  3. Z.Y. Al Balushi et al., Two-dimensional gallium nitride realized via graphene encapsulation. Nat. Mater. 15(11), 1166–1171 (2016). https://doi.org/10.1038/nmat4742

    Article  CAS  Google Scholar 

  4. Y.G. Cao, M.H. Xie, Y. Liu, Y.F. Ng, H.S. Wu, S.Y. Tong, InN island shape and its dependence on growth condition of molecular-beam epitaxy. Appl. Phys. Lett. 83(25), 5157–5159 (2003). https://doi.org/10.1063/1.1635077

    Article  CAS  Google Scholar 

  5. V. Narayanan, K. Lorenz, W. Kim, S. Mahajan, Gallium nitride epitaxy on (0001) sapphire. Philos. Mag. A 82(5), 885–912 (2002). https://doi.org/10.1080/01418610208240008

    Article  CAS  Google Scholar 

  6. N. Itagaki et al., Growth of single crystalline films on lattice-mismatched substrates through 3D to 2D mode transition. Sci. Rep. 10(1), 4669 (2020). https://doi.org/10.1038/s41598-020-61596-w

    Article  CAS  Google Scholar 

  7. C. Adelmann, B. Daudin, R.A. Oliver, G.A.D. Briggs, R.E. Rudd, Nucleation and growth of $\mathrm{GaN}∕\mathrm{AlN}$ quantum dots. Phys. Rev. B 70(12), 125427 (2004). https://doi.org/10.1103/PhysRevB.70.125427

    Article  CAS  Google Scholar 

  8. L.W. Liu et al., Growth and structural properties of Pb Islands on epitaxial graphene on Ru(0001). J. Phys. Chem. C 117(44), 22652–22655 (2013). https://doi.org/10.1021/jp404190c

    Article  CAS  Google Scholar 

  9. A.C. Levi, M. Kotrla, Theory and simulation of crystal growth. J. Phys. Condens. Matter 9(2), 299–344 (1997). https://doi.org/10.1088/0953-8984/9/2/001

    Article  CAS  Google Scholar 

  10. A. Braun, M. Diale, J.B. Malherbe, M. Braun, Introduction. J. Mater. Res. 32(21), 3921–3923 (2017). https://doi.org/10.1557/jmr.2017.426

    Article  Google Scholar 

  11. N. Briggs et al., Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy. Nat. Mater. (2020). https://doi.org/10.1038/s41563-020-0631-x

    Article  Google Scholar 

  12. M. Rajapakse et al., Intercalation as a versatile tool for fabrication, property tuning, and phase transitions in 2D materials. Npj 2D Mater Appl. 5(1), 1–21 (2021). https://doi.org/10.1038/s41699-021-00211-6

    Article  CAS  Google Scholar 

  13. M.S. Stark, K.L. Kuntz, S.J. Martens, S.C. Warren, Intercalation of layered materials from bulk to 2D. Adv. Mater. 31(27), 1808213 (2019). https://doi.org/10.1002/adma.201808213

    Article  CAS  Google Scholar 

  14. B. Pécz, G. Nicotra, F. Giannazzo, R. Yakimova, A. Koos, A. Kakanakova-Georgieva, Indium nitride at the 2D Limit. Adv. Mater. 33(1), 2006660 (2021). https://doi.org/10.1002/adma.202006660

    Article  CAS  Google Scholar 

  15. A. Kakanakova-Georgieva et al., Nanoscale phenomena ruling deposition and intercalation of AlN at the graphene/SiC interface. Nanoscale 12(37), 19470–19476 (2020). https://doi.org/10.1039/D0NR04464D

    Article  CAS  Google Scholar 

  16. S. Rajabpour et al., Tunable 2D group-III metal alloys. Adv. Mater. (2021). https://doi.org/10.1002/adma.202104265

    Article  Google Scholar 

  17. F. Bisti et al., Electronic and geometric structure of graphene/SiC(0001) decoupled by lithium intercalation. Phys. Rev. B 91(24), 245411 (2015). https://doi.org/10.1103/PhysRevB.91.245411

    Article  CAS  Google Scholar 

  18. Y.-P. Lin, Y. Ksari, J.-M. Themlin, Hydrogenation of the buffer-layer graphene on 6H-SiC (0001): a possible route for the engineering of graphene-based devices. Nano Res. 8(3), 839–850 (2015). https://doi.org/10.1007/s12274-014-0566-0

    Article  CAS  Google Scholar 

  19. C. Riedl, C. Coletti, T. Iwasaki, A.A. Zakharov, U. Starke, Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 103(24), 246804 (2009). https://doi.org/10.1103/PhysRevLett.103.246804

    Article  CAS  Google Scholar 

  20. W. Tian, W. Li, W. Yu, X. Liu, A review on lattice defects in graphene: types, generation, effects and regulation. Micromachines (2017). https://doi.org/10.3390/mi8050163

    Article  Google Scholar 

  21. F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural defects in graphene. ACS Nano 5(1), 26–41 (2011). https://doi.org/10.1021/nn102598m

    Article  CAS  Google Scholar 

  22. J.C. Meyer, C. Kisielowski, R. Erni, M.D. Rossell, M.F. Crommie, A. Zettl, Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8(11), 3582–3586 (2008). https://doi.org/10.1021/nl801386m

    Article  CAS  Google Scholar 

  23. J. Ma, D. Alfè, A. Michaelides, E. Wang, Stone-Wales defects in graphene and other planar $s{p}^{2}$-bonded materials. Phys. Rev. B 80(3), 033407 (2009). https://doi.org/10.1103/PhysRevB.80.033407

    Article  CAS  Google Scholar 

  24. N. Nayir et al., Atomic-scale probing of defect-assisted Ga intercalation through graphene using ReaxFF molecular dynamics simulations. Carbon 190, 276–290 (2022). https://doi.org/10.1016/j.carbon.2022.01.005

    Article  CAS  Google Scholar 

  25. Y. Han, J.W. Evans, M.C. Tringides, Dy adsorption on and intercalation under graphene on 6H-SiC(0001) surface from first-principles calculations. Phys. Rev. Mater. 5(7), 074004 (2021). https://doi.org/10.1103/PhysRevMaterials.5.074004

    Article  CAS  Google Scholar 

  26. Y. Orimoto, K. Otsuka, K. Yagyu, H. Tochihara, T. Suzuki, Y. Aoki, Theoretical study of Cu intercalation through a defect in zero-layer graphene on SiC surface. J. Phys. Chem. C 121(13), 7294–7302 (2017). https://doi.org/10.1021/acs.jpcc.7b00314

    Article  CAS  Google Scholar 

  27. F. Yao et al., Diffusion mechanism of lithium ion through basal plane of layered graphene. J. Am. Chem. Soc. 134(20), 8646–8654 (2012). https://doi.org/10.1021/ja301586m

    Article  CAS  Google Scholar 

  28. Y. Han, A. Lii-Rosales, M.C. Tringides, J.W. Evans, P.A. Thiel, Energetics of Cu adsorption and intercalation at graphite step edges. Phys. Rev. B 99(11), 115415 (2019). https://doi.org/10.1103/PhysRevB.99.115415

    Article  CAS  Google Scholar 

  29. Y. Liu et al., Mechanism of metal intercalation under graphene through small vacancy defects. J. Phys. Chem. C 125(12), 6954–6962 (2021). https://doi.org/10.1021/acs.jpcc.1c00814

    Article  CAS  Google Scholar 

  30. A. Lii-Rosales et al., Encapsulation of metal nanoparticles at the surface of a prototypical layered material. Nanoscale 13(3), 1485–1506 (2021). https://doi.org/10.1039/D0NR07024F

    Article  CAS  Google Scholar 

  31. M. Büttner, P. Choudhury, J. Karl Johnson, J.T. Yates, Vacancy clusters as entry ports for cesium intercalation in graphite. Carbon 49(12), 3937–3952 (2011). https://doi.org/10.1016/j.carbon.2011.05.032

    Article  CAS  Google Scholar 

  32. Y. Han, J.W. Evans, M.C. Tringides, Thermodynamics and kinetics of H adsorption and intercalation for graphene on 6H-SiC(0001) from first-principles calculations. J. Vac. Sci. Technol. A 40(1), 012202 (2022). https://doi.org/10.1116/6.0001343

    Article  CAS  Google Scholar 

  33. W. Zhang, A.C.T. van Duin, Atomistic-scale simulations of the graphene growth on a silicon carbide substrate using thermal decomposition and chemical vapor deposition. Chem. Mater. 32(19), 8306–8317 (2020). https://doi.org/10.1021/acs.chemmater.0c02121

    Article  CAS  Google Scholar 

  34. E. Voloshina, K. Rosciszewski, B. Paulus, First-principles study of the connection between structure and electronic properties of gallium. Phys. Rev. B 79(4), 045113 (2009). https://doi.org/10.1103/PhysRevB.79.045113

    Article  CAS  Google Scholar 

  35. B.Q. Song, L.D. Pan, Penetration of the first-two-row elements through mono-layer graphene. Carbon 109, 117–123 (2016). https://doi.org/10.1016/j.carbon.2016.07.065

    Article  CAS  Google Scholar 

  36. J. Emsley, The elements, 3rd edn. (Clarendon Press, Oxford, 1998)

    Google Scholar 

  37. W. Li, L. Huang, M.C. Tringides, J.W. Evans, Y. Han, Thermodynamic preference for atom adsorption on versus intercalation into multilayer graphene. J. Phys. Chem. Lett. 11(22), 9725–9730 (2020). https://doi.org/10.1021/acs.jpclett.0c02887

    Article  CAS  Google Scholar 

  38. G. Li et al., Role of cooperative interactions in the intercalation of heteroatoms between graphene and a metal substrate. J. Am. Chem. Soc. 137(22), 7099–7103 (2015). https://doi.org/10.1021/ja5113657

    Article  CAS  Google Scholar 

  39. J. Rohrer, E. Ziambaras, P. Hyldgaard, Relative stability of $6H$-SiC$\{0001\}$ surface terminations and formation of graphene overlayers by Si evaporation. ArXiv11022111 Cond-Mat. (2011.) http://arxiv.org/abs/1102.2111. Accessed 29 Nov 2021.

  40. R. Gutzler, J.C. Schön, Two-dimensional silicon-carbon compounds: structure prediction and band structures. Z. Für Anorg. Allg. Chem. 643(21), 1368–1373 (2017). https://doi.org/10.1002/zaac.201700258

    Article  CAS  Google Scholar 

  41. Y. Miyamoto, B.D. Yu, Computational designing of graphitic silicon carbide and its tubular forms. Appl. Phys. Lett. 80(4), 586–588 (2002). https://doi.org/10.1063/1.1445474

    Article  CAS  Google Scholar 

  42. M. Yu, C.S. Jayanthi, S.Y. Wu, bonding nature, structural optimization, and energetics studies of SiC graphitic-like layer structures and single/double walled nanotubes. Phys. Rev. B 82(7), 075407 (2010). https://doi.org/10.1103/PhysRevB.82.075407

    Article  CAS  Google Scholar 

  43. C.L. Freeman, F. Claeyssens, N.L. Allan, J.H. Harding, Graphitic nanofilms as precursors to wurtzite films: theory. Phys. Rev. Lett. 96(6), 066102 (2006). https://doi.org/10.1103/PhysRevLett.96.066102

    Article  CAS  Google Scholar 

  44. T. Susi et al., Computational insights and the observation of SiC nanograin assembly: towards 2D silicon carbide. Sci. Rep. 7(1), 4399 (2017). https://doi.org/10.1038/s41598-017-04683-9

    Article  CAS  Google Scholar 

  45. Z. Zhao, Y. Yong, Q. Zhou, Y. Kuang, X. Li, Gas-sensing properties of the SiC monolayer and bilayer: a density functional theory study. ACS Omega 5(21), 12364–12373 (2020). https://doi.org/10.1021/acsomega.0c01084

    Article  CAS  Google Scholar 

  46. L. Pan et al., First-principles study of monolayer and bilayer honeycomb structures of group-IV elements and their binary compounds. Phys. Lett. A 375(3), 614–619 (2011). https://doi.org/10.1016/j.physleta.2010.11.062

    Article  CAS  Google Scholar 

  47. L. Yuan, Z. Li, J. Yang, Hydrogenated bilayer wurtzite SiC nanofilms: a two-dimensional bipolar magnetic semiconductor material. Phys. Chem. Chem. Phys. 15(2), 497–503 (2012). https://doi.org/10.1039/C2CP43129G

    Article  Google Scholar 

  48. G. Lee, J. Kim, K. Kim, J.W. Han, Precise control of defects in graphene using oxygen plasma. J. Vac. Sci. Technol. A 33(6), 060602 (2015). https://doi.org/10.1116/1.4926378

    Article  CAS  Google Scholar 

  49. N. Ferralis, R. Maboudian, C. Carraro, Evidence of structural strain in epitaxial graphene layers on 6H-SiC(0001). Phys. Rev. Lett. 101(15), 156801 (2008). https://doi.org/10.1103/PhysRevLett.101.156801

    Article  CAS  Google Scholar 

  50. Z.H. Ni et al., Raman spectroscopy of epitaxial graphene on a SiC substrate. Phys. Rev. B 77(11), 115416 (2008). https://doi.org/10.1103/PhysRevB.77.115416

    Article  CAS  Google Scholar 

  51. I. Shtepliuk, R. Yakimova, Interaction of H and Li with epitaxial graphene on SiC: a comparative analysis by first principles study. Appl. Surf. Sci. 568, 150988 (2021). https://doi.org/10.1016/j.apsusc.2021.150988

    Article  CAS  Google Scholar 

  52. T. Cavallucci, V. Tozzini, Intrinsic structural and electronic properties of the buffer layer on silicon carbide unraveled by density functional theory. Sci Rep (2018). https://doi.org/10.1038/s41598-018-31490-7

    Article  Google Scholar 

  53. Y. Cui et al., An exchange intercalation mechanism for the formation of a two-dimensional Si structure underneath graphene. Nano Res. 5(5), 352–360 (2012). https://doi.org/10.1007/s12274-012-0215-4

    Article  CAS  Google Scholar 

  54. A. Lii-Rosales et al., Formation of multilayer cu islands embedded beneath the surface of graphite: characterization and fundamental insights. J. Phys. Chem. C 122(8), 4454–4469 (2018). https://doi.org/10.1021/acs.jpcc.7b12533

    Article  CAS  Google Scholar 

  55. A. Lii-Rosales et al., Fabricating Fe nanocrystals via encapsulation at the graphite surface. J. Vac. Sci. Technol. A 37(6), 061403 (2019). https://doi.org/10.1116/1.5124927

    Article  CAS  Google Scholar 

  56. P. Giannozzi et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21(39), 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  57. P. Giannozzi et al., Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29(46), 465901 (2017). https://doi.org/10.1088/1361-648X/aa8f79

    Article  CAS  Google Scholar 

  58. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  59. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  60. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  61. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 78(7), 1396–1396 (1997). https://doi.org/10.1103/PhysRevLett.78.1396

    Article  CAS  Google Scholar 

  62. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44(6), 1272–1276 (2011). https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  63. G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000). https://doi.org/10.1063/1.1329672

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks to Prof. Adri van Duin for the fruitful discussions.

Funding

This work was financially supported by the National Science Foundation (NSF) through the Pennsylvania State University 2D Crystal Consortium—Materials Innovation Platform (2DCCMIP) under the NSF cooperative agreement DMR-1808900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadire Nayir.

Ethics declarations

Conflict of interest

The author declares no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayir, N. Density functional study of Ga intercalation at graphene/SiC heterointerface. Journal of Materials Research 37, 1172–1182 (2022). https://doi.org/10.1557/s43578-022-00530-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00530-4

Keywords

Navigation