Abstract
The intercalation technique has harnessed tremendous attention in the 2D materials’ community, enabling to fabricate atomically thin and stable non-layered materials such as Ga at the heterointerface of graphene/SiC. However, the atomistic mechanism of the metal intercalation at such interface has still yet to been understood. In this study, first-principles calculations provide a thermodynamic and kinetic level understanding of the Ga penetration into and nucleation at the SiC/graphene interface. A Ga atom encapsulated at the graphene/SiC interface is thermodynamically more stable than adsorbed on the top of the graphene layer, signifying the necessity of exploiting the SiC substrate during the 2D Ga growth to facilitate the Ga migration into the SiC/graphene interface. Additionally, the sizes of a Ga atom and vacancy defect are critical to the Ga penetration through graphene, affecting the thermodynamic and kinetic preference of a Ga atom between the adsorption on graphene or the intercalation in to the SiC/graphene gallery.
Graphical abstract
Similar content being viewed by others
Data availability
The data are available upon reasonable request from the corresponding author (N.N.).
References
S. Chabi, K. Kadel, Two-dimensional silicon carbide: emerging direct band gap semiconductor. Nanomaterials (2020). https://doi.org/10.3390/nano10112226
A. Zavabeti, A. Jannat, L. Zhong, A.A. Haidry, Z. Yao, J.Z. Ou, Two-dimensional materials in large-areas: synthesis, properties and applications. Nano-Micro Lett. 12(1), 66 (2020). https://doi.org/10.1007/s40820-020-0402-x
Z.Y. Al Balushi et al., Two-dimensional gallium nitride realized via graphene encapsulation. Nat. Mater. 15(11), 1166–1171 (2016). https://doi.org/10.1038/nmat4742
Y.G. Cao, M.H. Xie, Y. Liu, Y.F. Ng, H.S. Wu, S.Y. Tong, InN island shape and its dependence on growth condition of molecular-beam epitaxy. Appl. Phys. Lett. 83(25), 5157–5159 (2003). https://doi.org/10.1063/1.1635077
V. Narayanan, K. Lorenz, W. Kim, S. Mahajan, Gallium nitride epitaxy on (0001) sapphire. Philos. Mag. A 82(5), 885–912 (2002). https://doi.org/10.1080/01418610208240008
N. Itagaki et al., Growth of single crystalline films on lattice-mismatched substrates through 3D to 2D mode transition. Sci. Rep. 10(1), 4669 (2020). https://doi.org/10.1038/s41598-020-61596-w
C. Adelmann, B. Daudin, R.A. Oliver, G.A.D. Briggs, R.E. Rudd, Nucleation and growth of $\mathrm{GaN}∕\mathrm{AlN}$ quantum dots. Phys. Rev. B 70(12), 125427 (2004). https://doi.org/10.1103/PhysRevB.70.125427
L.W. Liu et al., Growth and structural properties of Pb Islands on epitaxial graphene on Ru(0001). J. Phys. Chem. C 117(44), 22652–22655 (2013). https://doi.org/10.1021/jp404190c
A.C. Levi, M. Kotrla, Theory and simulation of crystal growth. J. Phys. Condens. Matter 9(2), 299–344 (1997). https://doi.org/10.1088/0953-8984/9/2/001
A. Braun, M. Diale, J.B. Malherbe, M. Braun, Introduction. J. Mater. Res. 32(21), 3921–3923 (2017). https://doi.org/10.1557/jmr.2017.426
N. Briggs et al., Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy. Nat. Mater. (2020). https://doi.org/10.1038/s41563-020-0631-x
M. Rajapakse et al., Intercalation as a versatile tool for fabrication, property tuning, and phase transitions in 2D materials. Npj 2D Mater Appl. 5(1), 1–21 (2021). https://doi.org/10.1038/s41699-021-00211-6
M.S. Stark, K.L. Kuntz, S.J. Martens, S.C. Warren, Intercalation of layered materials from bulk to 2D. Adv. Mater. 31(27), 1808213 (2019). https://doi.org/10.1002/adma.201808213
B. Pécz, G. Nicotra, F. Giannazzo, R. Yakimova, A. Koos, A. Kakanakova-Georgieva, Indium nitride at the 2D Limit. Adv. Mater. 33(1), 2006660 (2021). https://doi.org/10.1002/adma.202006660
A. Kakanakova-Georgieva et al., Nanoscale phenomena ruling deposition and intercalation of AlN at the graphene/SiC interface. Nanoscale 12(37), 19470–19476 (2020). https://doi.org/10.1039/D0NR04464D
S. Rajabpour et al., Tunable 2D group-III metal alloys. Adv. Mater. (2021). https://doi.org/10.1002/adma.202104265
F. Bisti et al., Electronic and geometric structure of graphene/SiC(0001) decoupled by lithium intercalation. Phys. Rev. B 91(24), 245411 (2015). https://doi.org/10.1103/PhysRevB.91.245411
Y.-P. Lin, Y. Ksari, J.-M. Themlin, Hydrogenation of the buffer-layer graphene on 6H-SiC (0001): a possible route for the engineering of graphene-based devices. Nano Res. 8(3), 839–850 (2015). https://doi.org/10.1007/s12274-014-0566-0
C. Riedl, C. Coletti, T. Iwasaki, A.A. Zakharov, U. Starke, Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 103(24), 246804 (2009). https://doi.org/10.1103/PhysRevLett.103.246804
W. Tian, W. Li, W. Yu, X. Liu, A review on lattice defects in graphene: types, generation, effects and regulation. Micromachines (2017). https://doi.org/10.3390/mi8050163
F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural defects in graphene. ACS Nano 5(1), 26–41 (2011). https://doi.org/10.1021/nn102598m
J.C. Meyer, C. Kisielowski, R. Erni, M.D. Rossell, M.F. Crommie, A. Zettl, Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 8(11), 3582–3586 (2008). https://doi.org/10.1021/nl801386m
J. Ma, D. Alfè, A. Michaelides, E. Wang, Stone-Wales defects in graphene and other planar $s{p}^{2}$-bonded materials. Phys. Rev. B 80(3), 033407 (2009). https://doi.org/10.1103/PhysRevB.80.033407
N. Nayir et al., Atomic-scale probing of defect-assisted Ga intercalation through graphene using ReaxFF molecular dynamics simulations. Carbon 190, 276–290 (2022). https://doi.org/10.1016/j.carbon.2022.01.005
Y. Han, J.W. Evans, M.C. Tringides, Dy adsorption on and intercalation under graphene on 6H-SiC(0001) surface from first-principles calculations. Phys. Rev. Mater. 5(7), 074004 (2021). https://doi.org/10.1103/PhysRevMaterials.5.074004
Y. Orimoto, K. Otsuka, K. Yagyu, H. Tochihara, T. Suzuki, Y. Aoki, Theoretical study of Cu intercalation through a defect in zero-layer graphene on SiC surface. J. Phys. Chem. C 121(13), 7294–7302 (2017). https://doi.org/10.1021/acs.jpcc.7b00314
F. Yao et al., Diffusion mechanism of lithium ion through basal plane of layered graphene. J. Am. Chem. Soc. 134(20), 8646–8654 (2012). https://doi.org/10.1021/ja301586m
Y. Han, A. Lii-Rosales, M.C. Tringides, J.W. Evans, P.A. Thiel, Energetics of Cu adsorption and intercalation at graphite step edges. Phys. Rev. B 99(11), 115415 (2019). https://doi.org/10.1103/PhysRevB.99.115415
Y. Liu et al., Mechanism of metal intercalation under graphene through small vacancy defects. J. Phys. Chem. C 125(12), 6954–6962 (2021). https://doi.org/10.1021/acs.jpcc.1c00814
A. Lii-Rosales et al., Encapsulation of metal nanoparticles at the surface of a prototypical layered material. Nanoscale 13(3), 1485–1506 (2021). https://doi.org/10.1039/D0NR07024F
M. Büttner, P. Choudhury, J. Karl Johnson, J.T. Yates, Vacancy clusters as entry ports for cesium intercalation in graphite. Carbon 49(12), 3937–3952 (2011). https://doi.org/10.1016/j.carbon.2011.05.032
Y. Han, J.W. Evans, M.C. Tringides, Thermodynamics and kinetics of H adsorption and intercalation for graphene on 6H-SiC(0001) from first-principles calculations. J. Vac. Sci. Technol. A 40(1), 012202 (2022). https://doi.org/10.1116/6.0001343
W. Zhang, A.C.T. van Duin, Atomistic-scale simulations of the graphene growth on a silicon carbide substrate using thermal decomposition and chemical vapor deposition. Chem. Mater. 32(19), 8306–8317 (2020). https://doi.org/10.1021/acs.chemmater.0c02121
E. Voloshina, K. Rosciszewski, B. Paulus, First-principles study of the connection between structure and electronic properties of gallium. Phys. Rev. B 79(4), 045113 (2009). https://doi.org/10.1103/PhysRevB.79.045113
B.Q. Song, L.D. Pan, Penetration of the first-two-row elements through mono-layer graphene. Carbon 109, 117–123 (2016). https://doi.org/10.1016/j.carbon.2016.07.065
J. Emsley, The elements, 3rd edn. (Clarendon Press, Oxford, 1998)
W. Li, L. Huang, M.C. Tringides, J.W. Evans, Y. Han, Thermodynamic preference for atom adsorption on versus intercalation into multilayer graphene. J. Phys. Chem. Lett. 11(22), 9725–9730 (2020). https://doi.org/10.1021/acs.jpclett.0c02887
G. Li et al., Role of cooperative interactions in the intercalation of heteroatoms between graphene and a metal substrate. J. Am. Chem. Soc. 137(22), 7099–7103 (2015). https://doi.org/10.1021/ja5113657
J. Rohrer, E. Ziambaras, P. Hyldgaard, Relative stability of $6H$-SiC$\{0001\}$ surface terminations and formation of graphene overlayers by Si evaporation. ArXiv11022111 Cond-Mat. (2011.) http://arxiv.org/abs/1102.2111. Accessed 29 Nov 2021.
R. Gutzler, J.C. Schön, Two-dimensional silicon-carbon compounds: structure prediction and band structures. Z. Für Anorg. Allg. Chem. 643(21), 1368–1373 (2017). https://doi.org/10.1002/zaac.201700258
Y. Miyamoto, B.D. Yu, Computational designing of graphitic silicon carbide and its tubular forms. Appl. Phys. Lett. 80(4), 586–588 (2002). https://doi.org/10.1063/1.1445474
M. Yu, C.S. Jayanthi, S.Y. Wu, bonding nature, structural optimization, and energetics studies of SiC graphitic-like layer structures and single/double walled nanotubes. Phys. Rev. B 82(7), 075407 (2010). https://doi.org/10.1103/PhysRevB.82.075407
C.L. Freeman, F. Claeyssens, N.L. Allan, J.H. Harding, Graphitic nanofilms as precursors to wurtzite films: theory. Phys. Rev. Lett. 96(6), 066102 (2006). https://doi.org/10.1103/PhysRevLett.96.066102
T. Susi et al., Computational insights and the observation of SiC nanograin assembly: towards 2D silicon carbide. Sci. Rep. 7(1), 4399 (2017). https://doi.org/10.1038/s41598-017-04683-9
Z. Zhao, Y. Yong, Q. Zhou, Y. Kuang, X. Li, Gas-sensing properties of the SiC monolayer and bilayer: a density functional theory study. ACS Omega 5(21), 12364–12373 (2020). https://doi.org/10.1021/acsomega.0c01084
L. Pan et al., First-principles study of monolayer and bilayer honeycomb structures of group-IV elements and their binary compounds. Phys. Lett. A 375(3), 614–619 (2011). https://doi.org/10.1016/j.physleta.2010.11.062
L. Yuan, Z. Li, J. Yang, Hydrogenated bilayer wurtzite SiC nanofilms: a two-dimensional bipolar magnetic semiconductor material. Phys. Chem. Chem. Phys. 15(2), 497–503 (2012). https://doi.org/10.1039/C2CP43129G
G. Lee, J. Kim, K. Kim, J.W. Han, Precise control of defects in graphene using oxygen plasma. J. Vac. Sci. Technol. A 33(6), 060602 (2015). https://doi.org/10.1116/1.4926378
N. Ferralis, R. Maboudian, C. Carraro, Evidence of structural strain in epitaxial graphene layers on 6H-SiC(0001). Phys. Rev. Lett. 101(15), 156801 (2008). https://doi.org/10.1103/PhysRevLett.101.156801
Z.H. Ni et al., Raman spectroscopy of epitaxial graphene on a SiC substrate. Phys. Rev. B 77(11), 115416 (2008). https://doi.org/10.1103/PhysRevB.77.115416
I. Shtepliuk, R. Yakimova, Interaction of H and Li with epitaxial graphene on SiC: a comparative analysis by first principles study. Appl. Surf. Sci. 568, 150988 (2021). https://doi.org/10.1016/j.apsusc.2021.150988
T. Cavallucci, V. Tozzini, Intrinsic structural and electronic properties of the buffer layer on silicon carbide unraveled by density functional theory. Sci Rep (2018). https://doi.org/10.1038/s41598-018-31490-7
Y. Cui et al., An exchange intercalation mechanism for the formation of a two-dimensional Si structure underneath graphene. Nano Res. 5(5), 352–360 (2012). https://doi.org/10.1007/s12274-012-0215-4
A. Lii-Rosales et al., Formation of multilayer cu islands embedded beneath the surface of graphite: characterization and fundamental insights. J. Phys. Chem. C 122(8), 4454–4469 (2018). https://doi.org/10.1021/acs.jpcc.7b12533
A. Lii-Rosales et al., Fabricating Fe nanocrystals via encapsulation at the graphite surface. J. Vac. Sci. Technol. A 37(6), 061403 (2019). https://doi.org/10.1116/1.5124927
P. Giannozzi et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21(39), 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502
P. Giannozzi et al., Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29(46), 465901 (2017). https://doi.org/10.1088/1361-648X/aa8f79
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 78(7), 1396–1396 (1997). https://doi.org/10.1103/PhysRevLett.78.1396
K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44(6), 1272–1276 (2011). https://doi.org/10.1107/S0021889811038970
G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000). https://doi.org/10.1063/1.1329672
Acknowledgments
The author thanks to Prof. Adri van Duin for the fruitful discussions.
Funding
This work was financially supported by the National Science Foundation (NSF) through the Pennsylvania State University 2D Crystal Consortium—Materials Innovation Platform (2DCCMIP) under the NSF cooperative agreement DMR-1808900.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The author declares no conflict of interests.
Rights and permissions
About this article
Cite this article
Nayir, N. Density functional study of Ga intercalation at graphene/SiC heterointerface. Journal of Materials Research 37, 1172–1182 (2022). https://doi.org/10.1557/s43578-022-00530-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43578-022-00530-4