Skip to main content
Log in

Synthesis and characterization of a novel azido fluoroalkyl oligoether energetic plasticizer

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Cast cured formulations have emerged as an important enabling platform for the manufacturing of large calibre energetic systems. In this study, we report a novel hybrid oligomer containing fluoroalkyl and azido moieties, 1,4-bis((2-azido-4,4,5,5,6,6,7,7,7-nonafluoroheptyl)oxy)butane (BANFHOB) as an energetic plasticizer for a cast curable fluoropolymer (FP) binder. The fluoroalkyl and azido groups impart oxidizing and energy release properties to the plasticizer. BANFHOB was synthesized by cationic ring-opening polymerization of 2,2,3,3,4,4,5,5,5-nonafluoropentyloxirane, followed by end-group modification of the terminal hydroxyl groups into azides. BANFHOB with a number average molecular weight of 698 g/mol exhibited low glass transition temperature (Tg = –78.2 °C) and viscosity (η25°C = 71 mPa s). Compared to a conventional plasticizer (dibutyl phthalate), BANFHOB showed good miscibility with FP and exhibited excellent plasticizing effects by significantly reducing the Tg and viscosity of FP. BANFHOB also exhibited promising plasticizing effects on a commercial fluoropolymer binder (Viton®), demonstrating its application potential for fluoropolymer-based formulations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

Electronic supplementary information is available.

Code availability

Not applicable.

References

  1. SK Valluri M Schoenitz E Dreizin 2019 Fluorine-containing oxidizers for metal fuels in energetic formulations Def. Technol. 15 1 https://doi.org/10.1016/j.dt.2018.06.001

    Article  Google Scholar 

  2. DM Lemal 2004 Perspective on fluorocarbon chemistry J. Org. Chem. 69 1 https://doi.org/10.1021/jo0302556

    Article  CAS  Google Scholar 

  3. H.G. Ang and S. Pisharath, Fluoropolymers as binders. in Energetic Polymers: Binders and Plasticizers for Enhancing Performance (Wiley-VCH, Weinheim, 2012), pp. 147–169

  4. CA Crouse 2012 Fluorinated polymers as oxidizers for energetic composites DW Smith ST Iacono DJ Boday SC Kettwich Eds Advances in Fluorine-Containing Polymers American Chemical Society Washington 127 140

    Chapter  Google Scholar 

  5. H Nie LP Tan S Pisharath HH Hng 2021 Nanothermite composites with a novel cast curable fluoropolymer Chem. Eng. J. 414 128786 https://doi.org/10.1016/j.cej.2021.128786

    Article  CAS  Google Scholar 

  6. J. P. Agrawal: Propellants. In High Energy Materials: Propellants, Explosives and Pyrotechnics (Wiley-VCH, Weinheim, 2010), pp. 209–330

  7. D Trache K Khimeche 2013 Study on the influence of ageing on chemical and mechanical properties of N, N′-dimethyl-N, N′-diphenylcarbamide stabilized propellants J. Therm. Anal. Calorim. 111 305 https://doi.org/10.1007/s10973-012-2320-8

    Article  CAS  Google Scholar 

  8. A Provatas 2003 Energetic plasticizer migration studies J. Energy Mater. 21 237 https://doi.org/10.1080/713770435

    Article  CAS  Google Scholar 

  9. A. Provatas, Energetic polymers and plasticisers for explosive formulations—a review of recent advances. Report DSTO-TR-0966, Defence Science and Technology Organisation, Melbourne (2000). https://apps.dtic.mil/sti/citations/ADA377866

  10. G. Ampleman, Synthesis of a diazido terminated energetic plasticizer. US Patent 5124463 (1992). https://patents.google.com/patent/US5124463A/en

  11. MB Frankel LR Grant JE Flanagan 1992 Historical development of glycidyl azide polymer J. Propuls. Power 8 560 https://doi.org/10.2514/3.23514

    Article  CAS  Google Scholar 

  12. V Cı́rkva B Améduri B Boutevin O Paleta 1997 Chemistry of [(perfluoroalkyl)methyl] oxiranes. Regioselectivity of ring opening with O-nucleophiles and the preparation of amphiphilic monomers J. Fluor. Chem. 84 53 https://doi.org/10.1016/S0022-1139(97)00032-8

    Article  Google Scholar 

  13. S Bräse C Gil K Knepper V Zimmermann 2005 Organic azides: an exploding diversity of a unique class of compounds Angew. Chem. Int. Ed. 44 5188 https://doi.org/10.1002/anie.200400657

    Article  CAS  Google Scholar 

  14. EFV Scriven K Turnbull 1988 Azides: their preparation and synthetic uses Chem. Rev. 88 297 https://doi.org/10.1021/cr00084a001

    Article  CAS  Google Scholar 

  15. T Biedron P Kubisa S Penczek 1991 Polyepichlorohydrin diols free of cyclics: synthesis and characterization J. Polym. Sci. Part A 29 619 https://doi.org/10.1002/pola.1991.080290502

    Article  CAS  Google Scholar 

  16. P Kubisa 1988 Activated monomer mechanism in the cationic polymerization of cyclic ethers Macromol. Symp. 13/14 203 https://doi.org/10.1002/masy.19880130116

    Article  Google Scholar 

  17. M Bednarek P Kubisa S Penczek 1999 Coexistence of activated monomer and active chain end mechanisms in cationic copolymerization of tetrahydrofuran with ethylene oxide Macromolecules 32 5257 https://doi.org/10.1021/ma9900939

    Article  CAS  Google Scholar 

  18. AS Thompson GR Humphrey AM DeMarco DJ Mathre EJJ Grabowski 1993 Direct conversion of activated alcohols to azides using diphenyl phosphorazidate. A practical alternative to Mitsunobu conditions J. Org. Chem. 58 5886 https://doi.org/10.1021/jo00074a008

    Article  CAS  Google Scholar 

  19. C Yu B Liu L Hu 2000 A simple one-pot procedure for the direct conversion of alcohols to azides via phosphate activation Org. Lett. 2 1959 https://doi.org/10.1021/ol0060376

    Article  CAS  Google Scholar 

  20. GW Kabalka M Varma RS Varma PC Srivastava FF Knapp 1986 The tosylation of alcohols J. Org. Chem. 51 2386 https://doi.org/10.1021/jo00362a044

    Article  CAS  Google Scholar 

  21. J-I Morita H Nakatsuji T Misaki Y Tanabe 2005 Water-solvent method for tosylation and mesylation of primary alcohols promoted by KOH and catalytic amines Green Chem. 7 711 https://doi.org/10.1039/B505345E

    Article  CAS  Google Scholar 

  22. G Zhang J Li S Sun Y Luo 2019 Azido-terminated hyperbranched multi-arm copolymer as energetic macromolecular plasticizer Propellants Explos. Pyrotech. 44 345 https://doi.org/10.1002/prep.201800270

    Article  CAS  Google Scholar 

  23. K Wakasugi A Iida T Misaki Y Nishii Y Tanabe 2003 Simple, mild, and practical esterification, thioesterification, and amide formation utilizing p-toluenesulfonyl chloride and N-methylimidazole Adv. Synth. Catal. 345 1209 https://doi.org/10.1002/adsc.200303093

    Article  CAS  Google Scholar 

  24. Q-P Wu H Liu H-X Liu X Chen H Wang Q-S Zhang Y-Z Li 2010 Practical and efficient acylation and tosylation of sterically hindered alcohols catalyzed with 1-methylimidazole Chem. Res. Chin. Univ. 26 55

    CAS  Google Scholar 

  25. Y Zong L Wang Y Sun Z Li 2019 Preparation of novel side-chain fluoroalkyl polyether oligomers with terminal acrylate for emulsion copolymerization and application on cotton fabric finishing Chem. Pap. 73 2563 https://doi.org/10.1007/s11696-019-00810-0

    Article  CAS  Google Scholar 

  26. V Keerthi H Nie S Pisharath HH Hng 2020 Combustion characteristics of fluoropolymer coated boron powders Combust. Sci. Technol. https://doi.org/10.1080/00102202.2020.1804885

    Article  Google Scholar 

  27. MS Eroǧlu O Güven 1996 Thermal decomposition of poly(glycidyl azide) as studied by high-temperature FTIR and thermogravimetry J. Appl. Polym. Sci. 61 201 https://doi.org/10.1002/(SICI)1097-4628(19960711)61:2<201::AID-APP1>3.0.CO;2-T

    Article  Google Scholar 

  28. J Lonfei W Jingling X Shuman 1986 Mechanisms of pyrolysis of fluoropolymers J. Anal. Appl. Pyrolysis 10 99 https://doi.org/10.1016/0165-2370(86)85009-4

    Article  Google Scholar 

  29. P Ling CA Wight 1997 Laser photodissociation and thermal pyrolysis of energetic polymers J. Phys. Chem. B 101 2126 https://doi.org/10.1021/jp962936t

    Article  CAS  Google Scholar 

  30. S Vyazovkin AK Burnham JM Criado LA Pérez-Maqueda C Popescu N Sbirrazzuoli 2011 ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data Thermochim. Acta 520 1 https://doi.org/10.1016/j.tca.2011.03.034

    Article  CAS  Google Scholar 

  31. S Vyazovkin CA Wight 1999 Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data Thermochim. Acta 340–341 53 https://doi.org/10.1016/S0040-6031(99)00253-1

    Article  Google Scholar 

  32. T Akahira T Sunose 1971 Method of determining activation deterioration constant of electrical insulating materials Res. Report Chiba Inst. Technol. 16 22

    Google Scholar 

  33. S Vyazovkin 1996 A unified approach to kinetic processing of nonisothermal data Int. J. Chem. Kinet. 28 95 https://doi.org/10.1002/(SICI)1097-4601(1996)28:2<95::AID-KIN4>3.0.CO;2-G

    Article  CAS  Google Scholar 

  34. R.D. Chapman, Halogenated explosives to defeat biological agents. Report DTRA-IR-14–81, Naval Air Warfare Center Weapons Division, China Lake (2015). https://apps.dtic.mil/sti/citations/ADA621926

  35. D Kumari SG Anjitha CS Pant M Patil H Singh S Banerjee 2014 Synthetic approach to novel azido esters and their utility as energetic plasticizers RSC Adv. 4 39924 https://doi.org/10.1039/C4RA06530A

    Article  CAS  Google Scholar 

  36. S Hafner VA Hartdegen MS Hofmayer TM Klapötke 2016 Potential energetic plasticizers on the basis of 2,2-dinitropropane-1,3-diol and 2,2-bis(azidomethyl)propane-1,3-diol Propellants Explos. Pyrotech. 41 806 https://doi.org/10.1002/prep.201600066

    Article  CAS  Google Scholar 

  37. S Kumar A Kumar KDB Yamajala P Gaur D Kumar S Banerjee 2017 Design and evaluation of the thermal properties of di-, tri- and tetra-azido-esters Cent. Eur. J. Energetic Mater. 14 844s https://doi.org/10.22211/cejem/77612

    Article  CAS  Google Scholar 

  38. N Sheibani N Zohari R Fareghi-Alamdari 2020 Rational design, synthesis and evaluation of new azido-ester structures as green energetic plasticizers Dalton Trans. 49 12695 https://doi.org/10.1039/D0DT02250K

    Article  CAS  Google Scholar 

  39. R Xu Z Li Y Chen Y Wang B Zhao 2020 Synthesis, characterization, and properties of 1,2,8,9-tetraazido-4,6-dioxol-nonane: a promising multi-azido ether energetic plasticizer for glycidyl azide polymer Dalton Trans. 49 9016 https://doi.org/10.1039/D0DT01443E

    Article  CAS  Google Scholar 

  40. A. Wypych, Phthalates. in Databook of Plasticizers, 2nd edn. (ChemTec Publishing, Toronto, 2017), pp. 435– 560.

  41. D Sianesi V Zamboni R Fontanelli M Binaghi 1971 Perfluoropolyethers: their physical properties and behaviour at high and low temperatures Wear 18 85 https://doi.org/10.1016/0043-1648(71)90158-X

    Article  CAS  Google Scholar 

  42. BB Baker DJ Kasprzak 1993 Thermal degradation of commercial fluoropolymers in air Polym. Degrad. Stab. 42 181 https://doi.org/10.1016/0141-3910(93)90111-U

    Article  CAS  Google Scholar 

  43. MW Chase 1998 NIST-JANAF thermochemical tables J. Phys. Chem. Ref. Data Monograph 9 1 https://doi.org/10.18434/T42S31

    Article  Google Scholar 

  44. YV Maksimuk K Ruzicka VV Diky 2004 Enthalpy of formation of dibutyl phthalate Int. J. Thermophys. 25 379 https://doi.org/10.1023/B:IJOT.0000028475.70749.d6

    Article  CAS  Google Scholar 

  45. Section 13.4.2 Test 3(a)(ii): BAM Fallhammer. in Manual of Tests and Criteria, 7th rev. edn. (United Nations, New York and Geneva, 2019), pp. 85–92. https://unece.org/transport/dangerous-goods/rev7-files

  46. M Gordon JS Taylor 1952 Ideal copolymers and the second-order transitions of synthetic rubbers. I. Non-crystalline copolymers J. Appl. Chem. 2 493 https://doi.org/10.1002/jctb.5010020901

    Article  CAS  Google Scholar 

  47. P. Bunyan, A. Cunliffe, and P. Honey, Plasticisers for new energetic binders. in 29th International Annual Conference of ICT (Fraunhofer Institut für Chemische Technologie, Karlsruhe, 1998), pp. 86/1–14. https://archive.org/details/DTIC_ADA371351

  48. PH Daniels 2009 A brief overview of theories of PVC plasticization and methods used to evaluate PVC-plasticizer interaction J. Vinyl Addit. Technol. 15 219 https://doi.org/10.1002/vnl.20211

    Article  CAS  Google Scholar 

  49. DV Schoonover HW Gibson 2017 Facile removal of tosyl chloride from tosylates using cellulosic materials, e.g., filter paper Tetrahedron Lett. 58 242 https://doi.org/10.1016/j.tetlet.2016.12.014

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chor Yong Tay or Huey Hoon Hng.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 993 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ong, Y.J., Pisharath, S., See, Y.F.A. et al. Synthesis and characterization of a novel azido fluoroalkyl oligoether energetic plasticizer. Journal of Materials Research 37, 1296–1308 (2022). https://doi.org/10.1557/s43578-022-00525-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00525-1

Keywords

Navigation