Skip to main content
Log in

Electromagnetic shielding performance of reduced graphene oxide reinforced iron oxide nanostructured materials prepared by polyol method

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The relative shielding effectiveness (SE) of Fe3O4–rGO NC (nanocomposite) in the X-band frequency region is reported. The Fe3O4–rGO NC with different ratios (2:1, 1:1 and 1:2) were fabricated by polyol method and were further characterized by various physicochemical techniques. The Fe3O4–rGO NC (1:2) with 1 mm thickness shows improved total shielding efficiency of 59.41 dB at 8.29 GHz for microwave absorption. The Fe3O4 nanoparticles (NPs) (~ 5 nm) possess a significantly higher maximum saturation (Ms) 34.92 emu/g for enhanced microwave absorption. The Fe3O4–rGO NC (1:2) has exhibited higher total shielding efficiency of 59.41 dB due to its enhanced dielectric properties permeability (μ′ = 1.65 at 8.59 GHz and μ″ = 0.76 at 11.59 GHz); permittivity (ε′ = 91.38 at 11.5 GHz and ε″ = 67.54 at 8.5 GHz), and good attenuation ability. The effective shielding efficiency (SE) of Fe3O4–rGO (1:2) NC found to be 99.9995%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Data availability

All data generated or analyzed during this study are included in this publishing article.

References

  1. X.C. Tong, Advanced materials and design for electromagnetic interference shielding (CRC Press, Boca Raton, 2016)

    Google Scholar 

  2. T. Pan, Y. Zhang, C. Wang, H. Gao, B. Wen, B. Yao, Mulberry-like polyaniline-based flexible composite fabrics with effective electromagnetic shielding capability. Compos. Sci. Technol. 188, 107991 (2020)

    CAS  Google Scholar 

  3. M. Mishra, A.P. Singh, M. Kumar, T.K. Gupta, H. Bhandari, M. Chand, Investigation of the microwave absorbing properties on polymer sheets. J. Mater. Sci.: Mater. Electron. 32, 25963–25972 (2021)

    CAS  Google Scholar 

  4. H. Gao, C. Wang, Z. Yang, Y. Zhang, 3D porous nickel metal foam/polyaniline heterostructure with excellent electromagnetic interference shielding capability and superior absorption based on pre-constructed macroscopic conductive framework. Compos. Sci. Technol. 213, 108896 (2021)

    CAS  Google Scholar 

  5. Y. Zhang, T. Pan, Z. Yang, Flexible polyethylene terephthalate/polyaniline composite paper with bending durability and effective electromagnetic shielding performance. Chem. Eng. J. 389, 124433 (2020)

    Google Scholar 

  6. Y. Zhang, Z. Yang, T. Pan, H. Gao, H. Guan, J. Xu, Z. Zhang, Construction of natural fiber/polyaniline core-shell heterostructures with tunable and excellent electromagnetic shielding capability via a facile secondary doping strategy. Composites A 137, 105994 (2020)

    CAS  Google Scholar 

  7. Y. Zhang, M. Qiu, Y. Yu, B. Wen, L. Cheng, A novel polyaniline-coated bagasse fiber composite with core–shell heterostructure provides effective electromagnetic shielding performance. ACS Appl. Mater. Interfaces 9, 809–818 (2017)

    CAS  Google Scholar 

  8. Y. Zhang, Z. Yang, B. Wen, An ingenious strategy to construct helical structure with excellent electromagnetic shielding performance. Adv. Mater. Interfaces 6, 1900375 (2019)

    Google Scholar 

  9. S. Geetha, K.K. Satheesh Kumar, C.R. Rao, M. Vijayan, D.C. Trivedi, EMI shielding: methods and materials—a review. J. Appl. Polym. Sci. 112, 2073–2086 (2009)

    CAS  Google Scholar 

  10. K. Bhaskaran, R.K. Bheema, K.C. Etika, The influence of Fe3O4@GNP hybrids on enhancing the EMI shielding effectiveness of epoxy composites in the X-band. Synth. Metals 265, 116374 (2020)

    CAS  Google Scholar 

  11. X. Hong, T. Peng, C. Zhu, J. Wan, Y. Li, Electromagnetic shielding, resistance temperature-sensitive behavior, and decoupling of interfacial electricity for reduced graphene oxide paper. J. Alloys Compd. 882, 160756 (2021)

    CAS  Google Scholar 

  12. J.-M. Thomassin, C. Jerome, T. Pardoen, C. Bailly, I. Huynen, C. Detrembleur, Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R 74, 211–232 (2013)

    Google Scholar 

  13. H. Abbasi, M. Antunes, J.I. Velasco, Recent advances in carbon-based polymer NC for electromagnetic interference shielding. Prog. Mater. Sci. 103, 319–373 (2019)

    CAS  Google Scholar 

  14. C. Liang, H. Qiu, Y. Han, H. Gu, P. Song, L. Wang, J. Kong, D. Cao, J. Gu, Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy NC with high thermal conductivity. J. Mater. Chem. C 7, 2725–2733 (2019)

    CAS  Google Scholar 

  15. K. Raidongia, A.T. Tan, J. Huang, Graphene oxide: some new insights into an old material, in Carbon nanotubes and graphene. (Elsevier, Amsterdam, 2014), pp. 341–374

    Google Scholar 

  16. R. Kumar, A. Kaur, Effect of various reduction methods of graphene oxide on electromagnetic shielding performance of reduced graphene oxide against electromagnetic pollution in X-band frequency. Mater. Today Commun. 16, 374–379 (2018)

    CAS  Google Scholar 

  17. R. Kumar, S.K. Dhawan, H.K. Singh, A. Kaur, Charge transport mechanism of thermally reduced graphene oxide and their fabrication for high performance shield against electromagnetic pollution. Mater. Chem. Phys. 180, 413–421 (2016)

    CAS  Google Scholar 

  18. H. Cai, C. Feng, H. Xiao, B. Cheng, Synthesis of Fe3O4/rGO@PANI with three-dimensional flower-like nanostructure and microwave absorption properties. J. Alloys Compd. 893, 162227 (2021)

    Google Scholar 

  19. J.B. Anooja, K.S. Dijith, K.P. Surendran, G. Subodh, A simple strategy for flexible electromagnetic interference shielding: hybrid rGO@CB-Reinforced polydimethylsiloxane. J. Alloys Compd. 807, 151678 (2019)

    Google Scholar 

  20. K. Yu, Y. Zeng, G. Wang, X. Luo, T. Li, J. Zhao, K. Qian, C.B. Park, rGO/Fe3O4 hybrid induced ultra-efficient EMI shielding performance of phenolic-based carbon foam. RSC Adv. 9, 20643–20651 (2019)

    CAS  Google Scholar 

  21. L.S. Ganapathe, M.A. Mohamed, R. Mohamad Yunus, D.D. Berhanuddin, Magnetite (Fe3O4) nanoparticles in biomedical application: from synthesis to surface functionalisation. Magnetochemistry 6, 68 (2020)

    CAS  Google Scholar 

  22. Y.-H. Lee, W.-C. Ko, Y.-N. Zhuang, L.-Y. Wang, T.-W. Yu, S.-Y. Lee, T.-F. Way, S.-P. Rwei, Development of self-healable organic/inorganic hybrid materials containing a biobased copolymer via diels-alder chemistry and their application in electromagnetic interference shielding. Polymers 11, 1755 (2019)

    CAS  Google Scholar 

  23. J. Dalal, S. Malik, S. Dahiya, R. Punia, K. Singh, A.S. Maan, S.K. Dhawan, A. Ohlan, One pot synthesis and electromagnetic interference shielding behavior of reduced graphene oxide NC decorated with Ni0.5Co0.5Fe2O4 nanoparticles. J. Alloys Compd. 887, 161472 (2021)

    CAS  Google Scholar 

  24. X. Li, Q. Zhou, Y. Huang, J. Yang, Nanoindentation and abrasion in Fe3O4/rGO reinforced epoxy electromagnetic protective coatings. J. Alloys Compd. 887, 161277 (2021)

    CAS  Google Scholar 

  25. C. Ortiz, C. Hwang, A.H. Morrish, X.Z. Zhou, Microstructure and conversion electron Mössbauer studies of M decrease in Fe3O4 films. J. Mater. Res. 5, 824–828 (1990)

    CAS  Google Scholar 

  26. H. Matsuda, H. Sakakima, H. Adachi, A. Odagawa, K. Setsune, Preparation and characteristics of 90 rotated biepitaxial Fe3O4 thin films. J. Mater. Res. 17, 1985–1991 (2002)

    CAS  Google Scholar 

  27. D. Wan, W. Li, G. Wang, X. Wei, Size-controllable synthesis of Fe3O4 nanoparticles through oxidation–precipitation method as heterogeneous Fenton catalyst. J. Mater. Res. 31, 2608–2616 (2016)

    CAS  Google Scholar 

  28. G. Zhang, F. Qie, J. Hou, S. Luo, L. Luo, X. Sun, T. Tan, One-pot solvothermal method to prepare functionalized Fe3O4 nanoparticles for bioseparation. J. Mater. Res. 27, 1006–1013 (2012)

    CAS  Google Scholar 

  29. S. Ahmadi, C.-H. Chia, S. Zakaria, K. Saeedfar, N. Asim, Synthesis of Fe3O4 nanocrystals using hydrothermal approach. J. Magn. Magn. Mater. 324, 4147–4150 (2012)

    CAS  Google Scholar 

  30. H. Dong, Y.-C. Chen, C. Feldmann, Polyol synthesis of nanoparticles: status and options regarding metals, oxides, chalcogenides, and non-metal elements. Green Chem. 17, 4107–4132 (2015)

    CAS  Google Scholar 

  31. S. Sathish, S. Balakumar, Influence of physicochemical interactions of capping agent on magnetic properties of magnetite nanoparticles. Mater. Chem. Phys. 173, 364–371 (2016). https://doi.org/10.1016/j.matchemphys.2016.02.024

    Article  CAS  Google Scholar 

  32. R.J. Joseyphus, K. Shinoda, D. Kodama, B. Jeyadevan, Size controlled Fe nanoparticles through polyol process and their magnetic properties. Mater. Chem. Phys. 123, 487–493 (2010)

    CAS  Google Scholar 

  33. K.S. Dijith, R. Aiswarya, M. Praveen, S. Pillai, K.P. Surendran, Polyol derived Ni and NiFe alloys for effective shielding of electromagnetic interference. Mater. Chem. Front. 2, 1829–1841 (2018)

    CAS  Google Scholar 

  34. V. Shukla, Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Adv. 1, 1640–1671 (2019)

    Google Scholar 

  35. A. Rajan, M. Sharma, N.K. Sahu, Assessing magnetic and inductive thermal properties of various surfactants functionalised Fe3O4 nanoparticles for hyperthermia. Sci. Rep. 10, 1–15 (2020)

    Google Scholar 

  36. W. Lei, Y. Liu, X. Si, J. Xu, W. Du, J. Yang, T. Zhou, J. Lin, Synthesis and magnetic properties of octahedral Fe3O4 via a one-pot hydrothermal route. Phys. Lett. A 381, 314–318 (2017)

    CAS  Google Scholar 

  37. B.A. Aragaw, Reduced graphene oxide-intercalated graphene oxide nano-hybrid for enhanced photoelectrochemical water reduction. J. Nanostruct. Chem. 10, 9–18 (2020)

    CAS  Google Scholar 

  38. Y. Liang, W. Lu, Gamma-irradiation synthesis of Fe3O4/rGO NC as lithium-ion battery anodes. J. Mater. Sci.: Mater. Electron. 31, 17075–17083 (2020)

    CAS  Google Scholar 

  39. A.H.C. Khavar, G. Moussavi, A. Mahjoub, K. Yaghmaeian, V. Srivastava, M. Sillanpää, M. Satari, Novel magnetic Fe3O4@ rGO@ ZnO onion-like microspheres decorated with Ag nanoparticles for the efficient photocatalytic oxidation of metformin: toxicity evaluation and insights into the mechanisms. Catal. Sci. Technol. 9, 5819–5837 (2019)

    Google Scholar 

  40. T. Yoon, J. Kim, J. Kim, J.K. Lee, Electrostatic self-assembly of Fe3O4 nanoparticles on graphene oxides for high capacity lithium-ion battery anodes. Energies 6, 4830–4840 (2013)

    CAS  Google Scholar 

  41. M. Vinothkannan, C. Karthikeyan, A.R. Kim, D.J. Yoo, One-pot green synthesis of reduced graphene oxide (RGO)/Fe3O4 NC and its catalytic activity toward methylene blue dye degradation. Spectrochim. Acta A 136, 256–264 (2015)

    CAS  Google Scholar 

  42. S. Pakapongpan, A. Tuantranont, R.P. Poo-Arporn, Magnetic nanoparticle-reduced graphene oxide NC as a novel bioelectrode for mediatorless-membraneless glucose enzymatic biofuel cells. Sci. Rep. 7, 1–12 (2017)

    CAS  Google Scholar 

  43. T. Peik-See, A. Pandikumar, L.H. Ngee, H.N. Ming, C.C. Hua, Magnetically separable reduced graphene oxide/iron oxide NC materials for environmental remediation. Catal. Sci. Technol. 4, 4396–4405 (2014)

    CAS  Google Scholar 

  44. X.F. Zhang, P.F. Guan, X.L. Dong, Transform between the permeability and permittivity in the close-packed Ni nanoparticles. Appl. Phys. Lett. 97, 033107 (2010)

    Google Scholar 

  45. M.F. Hidayat, C. Insjaf, A. Taufiq, N. Mufti, Investigation of magnetic properties and mechanical responses on hydrogel-TMAH-magnetite. IOP Conf. Ser.: Mater. Sci. Eng. 367, 012025 (2018)

    Google Scholar 

  46. Q. Ai, Z. Yuan, R. Huang, C. Yang, G. Jiang, J. Xiong, Z. Huang, S. Yuan, One-pot co-precipitation synthesis of Fe3O4 nanoparticles embedded in 3D carbonaceous matrix as anode for lithium ion batteries. J. Mater. Sci. 54, 4212–4224 (2019)

    CAS  Google Scholar 

  47. C. Fu, G. Zhao, H. Zhang, S. Li, A facile route to controllable synthesis of Fe3O4/graphene composites and their application in lithium-ion batteries. Int. J. Electrochem. Sci. 9, 46–60 (2014)

    Google Scholar 

  48. Y. Hu, C. Xu, G. Xiao, M. Yi, Z. Chen, J. Zhang, Electrostatic self-assembly preparation of reduced graphene oxide-encapsulated alumina nanoparticles with enhanced mechanical properties of alumina NC. J. Eur. Ceram. Soc. 38, 5122–5133 (2018)

    CAS  Google Scholar 

  49. N.I. Ramli, N.A.B. Ismail, F. Abd-Wahab, W.W.A.W. Salim, Cyclic voltammetry and electrical impedance spectroscopy of electrodes modified with PEDOT: PSS-reduced graphene oxide composite, in Transparent conducting films. (IntechOpen, London, 2018)

  50. J.S. Sanchez, A. Pendashteh, J. Palma, M. Anderson, R. Marcilla, Anchored Fe3O4 nanoparticles on rGO nanosheets as high-power negative electrodes for aqueous batteries. ChemElectroChem 4, 1295–1305 (2017)

    CAS  Google Scholar 

  51. F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang, D. Hui, Z. Zhou, Graphene-based microwave absorbing composites: a review and prospective. Composites B 137, 260–277 (2018)

    CAS  Google Scholar 

  52. R. Tang, C. Jiang, W. Qian, J. Jian, X. Zhang, H. Wang, H. Yang, Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite. Sci. Rep. 5, 1–11 (2015)

    CAS  Google Scholar 

  53. C. Wang, L. Zong, N. Li, Y. Pan, Q. Liu, F. Zhang, L. Qiao, J. Wang, X. Jian, Light-weight 1D heteroatoms-doped Fe3C@C nanofibers for microwave absorption with a thinner matching thickness. J. Alloys Compd. 885, 160968 (2021)

    CAS  Google Scholar 

  54. J. Xue, C. Wu, X. Du, W. Ma, K. Wen, S. Huang, Y. Liu, Y. Liu, G. Zhao, Preparation and properties of functional particle Fe3O4-rGO and its modified fiber/epoxy composite for high-performance microwave absorption structure. Mater. Res. Express 7, 045303 (2020)

    CAS  Google Scholar 

  55. M. Verma, S.S. Chauhan, S.K. Dhawan, V. Choudhary, Graphene nanoplatelets/carbon nanotubes/polyurethane composites as efficient shield against electromagnetic polluting radiations. Composites B 120, 118–127 (2017)

    CAS  Google Scholar 

  56. H. Li, X. Lu, D. Yuan, J. Sun, F. Erden, F. Wang, C. He, Lightweight flexible carbon nanotube/polyaniline films with outstanding EMI shielding properties. J. Mater. Chem. C 5, 8694–8698 (2017)

    CAS  Google Scholar 

  57. M. Jaroszewski, S. Thomas, A.V. Rane, Advanced Materials for Electromagnetic Shielding: Fundamentals, Properties, and Applications. (Wiley, UK, 2018), ISBN: 9781119128618

  58. K. Cheng, H. Li, M. Zhu, H. Qiu, J. Yang, In situ polymerization of graphene-polyaniline@ polyimide composite films with high EMI shielding and electrical properties. RSC Adv. 10, 2368–2377 (2020)

    CAS  Google Scholar 

  59. A.F. Ahmad, S. Ab Aziz, Z. Abbas, S.J. Obaiys, A.M. Khamis, I.R. Hussain, M.H.M. Zaid, Preparation of a chemically reduced graphene oxide reinforced epoxy resin polymer as a composite for electromagnetic interference shielding and microwave-absorbing applications. Polymers 10, 1180 (2018)

    Google Scholar 

  60. Y. Li, F. Xu, X. Hu, Y. Luan, Z. Han, Z. Wang, Focusing effect of electromagnetic fields and its influence on sintering during the microwave processing of metallic particles. J. Mater. Res. 30, 3663–3670 (2015)

    CAS  Google Scholar 

  61. K. Rohith Vinod, P. Saravanan, T.R. Sures Kumar, R. Radha, M. Balasubramaniam, S. Balakumar, Enhanced shielding effectiveness in nanohybrids of graphene derivatives with Fe3O4 and ε-Fe3N in the X-band microwave region. Nanoscale 10, 12018–12034 (2018)

    Google Scholar 

  62. N. Joseph, S.K. Singh, R.K. Sirugudu, V.R.K. Murthy, S. Ananthakumar, M.T. Sebastian, Effect of silver incorporation into PVDF-barium titanate composites for EMI shielding applications. Mater. Res. Bull. 48, 1681–1687 (2013)

    CAS  Google Scholar 

  63. Y. Wang, H. Guan, C. Dong, X. Xiao, S. Du, Y. Wang, Reduced graphene oxide (RGO)/Mn3O4 NC for dielectric loss properties and electromagnetic interference shielding effectiveness at high frequency. Ceram. Int. 42, 936–942 (2016)

    CAS  Google Scholar 

  64. K. Rohith Vinod, M. Kumar, S. Balakumar, Fe0/rGO NC for cadmium remediation from drinking water and EMI shielding applications. AIP Conf. Proc. 2115, 030176 (2019)

    Google Scholar 

  65. Y. Liu, M. Lu, K. Wu, S. Yao, X. Du, G. Chen, Q. Zhang, L. Liang, M. Lu, Anisotropic thermal conductivity and electromagnetic interference shielding of epoxy NC based on magnetic driving reduced graphene oxide@Fe3O4. Compos. Sci. Technol. 174, 1–10 (2019)

    Google Scholar 

  66. J. Prasad, A.K. Singh, J. Shah, R.K. Kotnala, K. Singh, Synthesis of MoS2-reduced graphene oxide/Fe3O4 NC for enhanced electromagnetic interference shielding effectiveness. Mater. Res. Express 5, 055028 (2018)

    Google Scholar 

  67. J. Joseph, A. Sharma, B. Sahoo, A.M. Sidpara, J. Paul, Graphene/magnetite (Fe3O4) hybrid fillers for thermoplastic composites: X-band electromagnetic interference shielding characteristics. J. Electron. Mater. 49, 7259–7271 (2020)

    Google Scholar 

  68. C. Zhang, Y. Chen, H. Li, R. Tian, H. Liu, Facile fabrication of three-dimensional lightweight RGO/PPy nanotube/Fe3O4 aerogel with excellent electromagnetic wave absorption properties. ACS Omega 3, 5735–5743 (2018)

    CAS  Google Scholar 

  69. W.-Q. Yu, Y.-C. Qiu, H.-J. Xiao, H.-T. Yang, G.-M. Wang, Flexible rGO/Fe3O4 NPs/polyurethane film with excellent electromagnetic properties. Chin. Phys. B 28, 108103 (2019)

    CAS  Google Scholar 

  70. S. Lee, J. Kim, Diglycidyl ether of bisphenol–a functionalized graphene/copper foam composite with enhanced thermal conductivity and effective electromagnetic interference shielding. Synth. Metals 284, 116989 (2022)

    CAS  Google Scholar 

  71. J. Qiu, H. Cao, J. Liao, R. Du, K. Dou, N. Tsidaeva, W. Wang, 3D porous coral-like Co1.29Ni1.71O4 microspheres embedded into reduced graphene oxide aerogels with lightweight and broadband microwave absorption. J. Colloid Interface Sci. (2021). https://doi.org/10.1016/j.jcis.2021.11.176

    Article  Google Scholar 

  72. Y. Mao, D. Wang, S. Fu, Layer-by-layer self-assembled nanocoatings of Mxene and P, N-co-doped cellulose nanocrystals onto cotton fabrics for significantly reducing fire hazards and shielding electromagnetic interference. Composites A 153, 106751 (2022)

    CAS  Google Scholar 

  73. Y. Liu, Q. Wang, Q. Fang, W. Liu, F. Meng, Facile synthesis of CoFe2O4/reduced graphene oxide NC with adjusting porous morphology for efficient microwave absorption. J. Magn. Magn. Mater. 546, 168903 (2022)

    CAS  Google Scholar 

  74. H. Zhu, Q. Jiao, R. Fu, P. Su, C. Yang, C. Feng, H. Li, D. Shi, Y. Zhao, Cu/NC@ Co/NC composites derived from core-shell Cu-MOF@ Co-MOF and their electromagnetic wave absorption properties. J. Colloid Interface Sci. (2021). https://doi.org/10.1016/j.jcis.2021.11.166

    Article  Google Scholar 

  75. L. Zhang, Y. Chen, Q. Liu, W. Deng, Y. Yue, F. Meng, Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding. J. Mater. Sci. Technol. (2021). https://doi.org/10.1016/j.jmst.2021.08.090

    Article  Google Scholar 

  76. T. Hou, Z. Jia, Y. Dong, X. Liu, G. Wu, Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption. Chem. Eng. J. 431, 133919 (2021)

    Google Scholar 

  77. R. Fallah, S. Hosseinabadi, G. Pourtaghi, Influence of Fe3O4 and carbon black on the enhanced electromagnetic interference (EMI) shielding effectiveness in the epoxy resin matrix. J. Environ. Health Sci. Eng. (2021). https://doi.org/10.1007/s40201-021-00759-x

    Article  Google Scholar 

  78. G. Tong, W. Wu, R. Qiao, J. Yuan, J. Guan, H. Qian, Morphology dependence of static magnetic and microwave electromagnetic characteristics of polymorphic Fe3O4 nanomaterials. J. Mater. Res. 26, 1639–1645 (2011)

    CAS  Google Scholar 

  79. Y. Duan, M. Gao, H. Pang, T. Wang, FeCoNiMnAl high-entropy alloy: improving electromagnetic wave absorption properties. J. Mater. Res. 36, 2107–2117 (2021)

    CAS  Google Scholar 

  80. B. Rajan, S. Sathish, S. Balakumar, T. Devaki, Synthesis and dose interval dependent hepatotoxicity evaluation of intravenously administered polyethylene glycol-8000 coated ultra-small superparamagnetic iron oxide nanoparticle on Wistar rats. Environ. Toxicol. Pharmacol. 39, 727–735 (2015). https://doi.org/10.1016/j.etap.2015.01.018

    Article  CAS  Google Scholar 

  81. G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270–274 (2008)

    CAS  Google Scholar 

  82. X.-Y. Zhang, S.-H. Sun, X.-J. Sun, Y.-R. Zhao, L. Chen, Y. Yang, W. Lü, D.-B. Li, Plasma-induced, nitrogen-doped graphene-based aerogels for high-performance supercapacitors. Light: Sci. Appl. 5, e16130–e16130 (2016)

    CAS  Google Scholar 

  83. X. Jian, B. Wu, Y. Wei, S.X. Dou, X. Wang, W. He, N. Mahmood, Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 8, 6101–6109 (2016)

    CAS  Google Scholar 

  84. V. Harnchana, S. Chaiyachad, S. Pimanpang, C. Saiyasombat, P. Srepusharawoot, V. Amornkitbamrung, Hierarchical Fe3O4-reduced graphene oxide NC grown on NaCl crystals for triiodide reduction in dye-sensitized solar cells. Sci. Rep. 9, 1–12 (2019)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. V. Subramanian, Microwave laboratory, Department of Physics, IITM for providing Vector network Analysis facility.

Funding

This work was supported by Defence Metallurgical Research Laboratory (DMRL) (Ref No: DMRL/CARS-22/TC) and Dr. NB acknowledges Department of Biotechnology, New Delhi, for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection, analysis and original draft writing were performed by GT, validation & editing NM, editing NKM, visualization KRV, technical support AVK, formal analysis PS, investigation TDT and supervision SB.

Corresponding author

Correspondence to Balakumar Subramanian.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 325 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govindasamy, T., Nandhakumar, M., Mathew, N.K. et al. Electromagnetic shielding performance of reduced graphene oxide reinforced iron oxide nanostructured materials prepared by polyol method. Journal of Materials Research 37, 1216–1230 (2022). https://doi.org/10.1557/s43578-022-00522-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00522-4

Keywords

Navigation