Abstract
Layered Na0.67Ni0.33Mn0.67O2 is an attractive cathode material for sodium ion batteries. The thermal stability of cathode materials is crucial to their practical applications. In this work, we investigate structural and morphological evolution in layered P2-type Na0.67Ni0.33Mn0.67O2 cathode materials during annealing via in situ synchrotron X-ray diffraction and transmission electron microscopy. Insights are obtained from two complementary in situ characterizations (at different length scales) in terms of the thermal stability of P2-Na0.67Ni0.33Mn0.67O2 cathode materials. The results indicate that the hexagonal P2 phase remains unchanged during the heat-treatment process, and thermally driven expansion/contraction of the lattice parameters exhibits an anisotropic change in the a and c directions. In addition, interfaces/grain boundaries play an important role in the structural stability, which leads to the distinct morphological evolution between the polycrystalline and single-crystal particles.
Graphical abstract
In situ high-energy XRD evolution of pristine Na0.67Ni0.33Mn0.67O2 cathode during heating–warming–cooling processes and corresponding lattice parameters evolution.
Similar content being viewed by others
Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Energy storage: the future enabled by nanomaterials. Science 366(6468), eaan8285 (2019)
S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294 (2012)
M. Li, J. Lu, Z. Chen, K. Amine, 30 years of lithium-ion batteries. Adv. Mater. 30(33), 1800561 (2018)
C. Vaalma, D. Buchholz, M. Weil, S. Passerini, A cost and resource analysis of sodium-ion batteries. Nat Rev Mater 3(4), 18013 (2018)
J. M. Granholm. National blueprint for lithium batteries 2021-2030. 24 (2021)
T. Hosaka, K. Kubota, A.S. Hameed, S. Komaba, Research development on K-ion batteries. Chem. Rev. 120(14), 6358 (2020)
M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Func. Mater. 23(8), 947 (2013)
S. Komaba, Sodium-driven rechargeable batteries: an effort towards future energy storage. Chem. Lett. 49(12), 1507 (2020)
S. Chu, S. Guo, H. Zhou. Advanced cobalt-free cathode materials for sodium-ion batteries. Chem. Soc. Rev. (2021)
J. Alvarado, C. Ma, S. Wang, K. Nguyen, M. Kodur, Y.S. Meng, Improvement of the cathode electrolyte interphase on P2-Na2/3Ni1/3Mn2/3O2 by atomic layer deposition. ACS Appl. Mater. Interfaces 9(31), 26518 (2017)
C. Deng, P. Skinner, Y. Liu, M. Sun, W. Tong, C. Ma, M.L. Lau, R. Hunt, P. Barnes, J. Xu, H. Xiong, Li-substituted layered spinel cathode material for sodium ion batteries. Chem. Mater. 30(22), 8145 (2018)
C. Deng, E. Gabriel, P. Skinner, S. Lee, P. Barnes, C. Ma, J. Gim, M.L. Lau, E. Lee, H. Xiong, Origins of irreversibility in layered NaNixFeyMnzO2 cathode materials for sodium ion batteries. ACS Appl. Mater. Interfaces 12(46), 51397 (2020)
D. Hou, D. Xia, E. Gabriel, J. A. Russell, K. Graff, Y. Ren, C.-J. Sun, F. Lin, Y. Liu, H. Xiong. Spatial and temporal analysis of sodium-ion batteries. ACS Energy Lett. 4023 (2021)
N. Yabuuchi, I. Ikeuchi, K. Kubota, S. Komaba, Thermal stability of NaxCrO2 for rechargeable sodium batteries; studies by high-temperature synchrotron x-ray diffraction. ACS Appl. Mater. Interfaces 8(47), 32292 (2016)
C. Yang, S. Xin, L. Mai, Y. You, Materials design for high-safety sodium-ion battery. Adv. Energy Mater. 11(2), 2000974 (2021)
S. Hwang, Y. Lee, E. Jo, K.Y. Chung, W. Choi, S.M. Kim, W. Chang, Investigation of thermal stability of P2–Na x CoO 2 cathode materials for sodium ion batteries using real-time electron microscopy. ACS Appl. Mater. Interfaces 9(22), 18883 (2017)
T. Ma, G.-L. Xu, X. Zeng, Y. Li, Y. Ren, C. Sun, S.M. Heald, J. Jorne, K. Amine, Z. Chen, Solid state synthesis of layered sodium manganese oxide for sodium-ion battery by in-situ high energy X-ray diffraction and X-ray absorption near edge spectroscopy. J. Power Sources 341, 114 (2017)
X.-B. Zhong, C. He, F. Gao, Z.-Q. Tian, J.-F. Li, In situ Raman spectroscopy reveals the mechanism of titanium substitution in P2–Na2/3Ni1/3Mn2/3O2: cathode materials for sodium batteries. J. Energy Chem. 53, 323 (2021)
V. Baran, O. Dolotko, M.J. Mühlbauer, A. Senyshyn, H. Ehrenberg, Thermal structural behavior of electrodes in li-ion battery studied in operando. J. Electrochem. Soc. 165(9), A1975 (2018)
W. Kobayashi, A. Yanagita, T. Akaba, T. Shimono, D. Tanabe, Y. Moritomo, Thermal expansion in layered Na × MO2. Sci Rep 8(1), 3988 (2018)
A.K. Bera, S.M. Yusuf, Temperature-dependent na-ion conduction and its pathways in the crystal structure of the layered battery material Na2Ni2TeO6. J. Phys. Chem. C 124(8), 4421 (2020)
S. Guo, Q. Li, P. Liu, M. Chen, H. Zhou, Environmentally stable interface of layered oxide cathodes for sodium-ion batteries. Nat Commun 8(1), 135 (2017)
Y. Huang, L. Zhao, L. Li, M. Xie, F. Wu, R. Chen, Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application. Adv. Mater. 31(21), 1808393 (2019)
T.-Y. Yu, H.-H. Ryu, G. Han, Y.-K. Sun, Understanding the capacity fading mechanisms of O3-Type Na[Ni0.5Mn0.5]O2 cathode for sodium-ion batteries. Adv. Energy Mater. 10(37), 2001609 (2020)
Z. Huang, Y. Yao, Z. Pang, Y. Yuan, T. Li, K. He, X. Hu, J. Cheng, W. Yao, Y. Liu, A. Nie, S. Sharifi-Asl, M. Cheng, B. Song, K. Amine, J. Lu, T. Li, L. Hu, R. Shahbazian-Yassar, Direct observation of the formation and stabilization of metallic nanoparticles on carbon supports. Nat. Commun. 11(1), 6373 (2020)
Y. Xie, E. Gabriel, L. Fan, I. Hwang, X. Li, H. Zhu, Y. Ren, C. Sun, J. Pipkin, M. Dustin, M. Li, Z. Chen, E. Lee, H. Xiong, Role of lithium doping in P2-Na0.67 Ni0.33 Mn0.67 O2 for sodium-ion batteries. Chem. Mater. 33(12), 4445 (2021)
B.H. Toby, R.B. Von Dreele, GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Cryst. 46(2), 544 (2013)
Acknowledgments
This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences program under Award Number DE-SC0019121. Use of the Center for Nanoscale Materials and Advanced Photon Source, both DOE Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationship that could have appeared to influence the work reported in this paper.
Rights and permissions
About this article
Cite this article
Hou, D., Gabriel, E., Graff, K. et al. Thermal dynamics of P2-Na0.67Ni0.33Mn0.67O2 cathode materials for sodium ion batteries studied by in situ analysis. Journal of Materials Research 37, 1156–1163 (2022). https://doi.org/10.1557/s43578-022-00519-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43578-022-00519-z