Skip to main content

Advertisement

Log in

Thermal dynamics of P2-Na0.67Ni0.33Mn0.67O2 cathode materials for sodium ion batteries studied by in situ analysis

  • Article
  • FOCUS ISSUE: In-situ Study of Materials Transformation
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Layered Na0.67Ni0.33Mn0.67O2 is an attractive cathode material for sodium ion batteries. The thermal stability of cathode materials is crucial to their practical applications. In this work, we investigate structural and morphological evolution in layered P2-type Na0.67Ni0.33Mn0.67O2 cathode materials during annealing via in situ synchrotron X-ray diffraction and transmission electron microscopy. Insights are obtained from two complementary in situ characterizations (at different length scales) in terms of the thermal stability of P2-Na0.67Ni0.33Mn0.67O2 cathode materials. The results indicate that the hexagonal P2 phase remains unchanged during the heat-treatment process, and thermally driven expansion/contraction of the lattice parameters exhibits an anisotropic change in the a and c directions. In addition, interfaces/grain boundaries play an important role in the structural stability, which leads to the distinct morphological evolution between the polycrystalline and single-crystal particles.

Graphical abstract

In situ high-energy XRD evolution of pristine Na0.67Ni0.33Mn0.67O2 cathode during heating–warming–cooling processes and corresponding lattice parameters evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. E. Pomerantseva, F. Bonaccorso, X. Feng, Y. Cui, Y. Gogotsi, Energy storage: the future enabled by nanomaterials. Science 366(6468), eaan8285 (2019)

    Article  CAS  Google Scholar 

  2. S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294 (2012)

    Article  CAS  Google Scholar 

  3. M. Li, J. Lu, Z. Chen, K. Amine, 30 years of lithium-ion batteries. Adv. Mater. 30(33), 1800561 (2018)

    Article  Google Scholar 

  4. C. Vaalma, D. Buchholz, M. Weil, S. Passerini, A cost and resource analysis of sodium-ion batteries. Nat Rev Mater 3(4), 18013 (2018)

    Article  Google Scholar 

  5. J. M. Granholm. National blueprint for lithium batteries 2021-2030. 24 (2021)

  6. T. Hosaka, K. Kubota, A.S. Hameed, S. Komaba, Research development on K-ion batteries. Chem. Rev. 120(14), 6358 (2020)

    Article  CAS  Google Scholar 

  7. M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Func. Mater. 23(8), 947 (2013)

    Article  CAS  Google Scholar 

  8. S. Komaba, Sodium-driven rechargeable batteries: an effort towards future energy storage. Chem. Lett. 49(12), 1507 (2020)

    Article  CAS  Google Scholar 

  9. S. Chu, S. Guo, H. Zhou. Advanced cobalt-free cathode materials for sodium-ion batteries. Chem. Soc. Rev. (2021)

  10. J. Alvarado, C. Ma, S. Wang, K. Nguyen, M. Kodur, Y.S. Meng, Improvement of the cathode electrolyte interphase on P2-Na2/3Ni1/3Mn2/3O2 by atomic layer deposition. ACS Appl. Mater. Interfaces 9(31), 26518 (2017)

    Article  CAS  Google Scholar 

  11. C. Deng, P. Skinner, Y. Liu, M. Sun, W. Tong, C. Ma, M.L. Lau, R. Hunt, P. Barnes, J. Xu, H. Xiong, Li-substituted layered spinel cathode material for sodium ion batteries. Chem. Mater. 30(22), 8145 (2018)

    Article  CAS  Google Scholar 

  12. C. Deng, E. Gabriel, P. Skinner, S. Lee, P. Barnes, C. Ma, J. Gim, M.L. Lau, E. Lee, H. Xiong, Origins of irreversibility in layered NaNixFeyMnzO2 cathode materials for sodium ion batteries. ACS Appl. Mater. Interfaces 12(46), 51397 (2020)

    Article  CAS  Google Scholar 

  13. D. Hou, D. Xia, E. Gabriel, J. A. Russell, K. Graff, Y. Ren, C.-J. Sun, F. Lin, Y. Liu, H. Xiong. Spatial and temporal analysis of sodium-ion batteries. ACS Energy Lett. 4023 (2021)

  14. N. Yabuuchi, I. Ikeuchi, K. Kubota, S. Komaba, Thermal stability of NaxCrO2 for rechargeable sodium batteries; studies by high-temperature synchrotron x-ray diffraction. ACS Appl. Mater. Interfaces 8(47), 32292 (2016)

    Article  CAS  Google Scholar 

  15. C. Yang, S. Xin, L. Mai, Y. You, Materials design for high-safety sodium-ion battery. Adv. Energy Mater. 11(2), 2000974 (2021)

    Article  CAS  Google Scholar 

  16. S. Hwang, Y. Lee, E. Jo, K.Y. Chung, W. Choi, S.M. Kim, W. Chang, Investigation of thermal stability of P2–Na x CoO 2 cathode materials for sodium ion batteries using real-time electron microscopy. ACS Appl. Mater. Interfaces 9(22), 18883 (2017)

    Article  CAS  Google Scholar 

  17. T. Ma, G.-L. Xu, X. Zeng, Y. Li, Y. Ren, C. Sun, S.M. Heald, J. Jorne, K. Amine, Z. Chen, Solid state synthesis of layered sodium manganese oxide for sodium-ion battery by in-situ high energy X-ray diffraction and X-ray absorption near edge spectroscopy. J. Power Sources 341, 114 (2017)

    Article  CAS  Google Scholar 

  18. X.-B. Zhong, C. He, F. Gao, Z.-Q. Tian, J.-F. Li, In situ Raman spectroscopy reveals the mechanism of titanium substitution in P2–Na2/3Ni1/3Mn2/3O2: cathode materials for sodium batteries. J. Energy Chem. 53, 323 (2021)

    Article  Google Scholar 

  19. V. Baran, O. Dolotko, M.J. Mühlbauer, A. Senyshyn, H. Ehrenberg, Thermal structural behavior of electrodes in li-ion battery studied in operando. J. Electrochem. Soc. 165(9), A1975 (2018)

    Article  CAS  Google Scholar 

  20. W. Kobayashi, A. Yanagita, T. Akaba, T. Shimono, D. Tanabe, Y. Moritomo, Thermal expansion in layered Na × MO2. Sci Rep 8(1), 3988 (2018)

    Article  Google Scholar 

  21. A.K. Bera, S.M. Yusuf, Temperature-dependent na-ion conduction and its pathways in the crystal structure of the layered battery material Na2Ni2TeO6. J. Phys. Chem. C 124(8), 4421 (2020)

    Article  CAS  Google Scholar 

  22. S. Guo, Q. Li, P. Liu, M. Chen, H. Zhou, Environmentally stable interface of layered oxide cathodes for sodium-ion batteries. Nat Commun 8(1), 135 (2017)

    Article  Google Scholar 

  23. Y. Huang, L. Zhao, L. Li, M. Xie, F. Wu, R. Chen, Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application. Adv. Mater. 31(21), 1808393 (2019)

    Article  Google Scholar 

  24. T.-Y. Yu, H.-H. Ryu, G. Han, Y.-K. Sun, Understanding the capacity fading mechanisms of O3-Type Na[Ni0.5Mn0.5]O2 cathode for sodium-ion batteries. Adv. Energy Mater. 10(37), 2001609 (2020)

    Article  CAS  Google Scholar 

  25. Z. Huang, Y. Yao, Z. Pang, Y. Yuan, T. Li, K. He, X. Hu, J. Cheng, W. Yao, Y. Liu, A. Nie, S. Sharifi-Asl, M. Cheng, B. Song, K. Amine, J. Lu, T. Li, L. Hu, R. Shahbazian-Yassar, Direct observation of the formation and stabilization of metallic nanoparticles on carbon supports. Nat. Commun. 11(1), 6373 (2020)

    Article  CAS  Google Scholar 

  26. Y. Xie, E. Gabriel, L. Fan, I. Hwang, X. Li, H. Zhu, Y. Ren, C. Sun, J. Pipkin, M. Dustin, M. Li, Z. Chen, E. Lee, H. Xiong, Role of lithium doping in P2-Na0.67 Ni0.33 Mn0.67 O2 for sodium-ion batteries. Chem. Mater. 33(12), 4445 (2021)

    Article  CAS  Google Scholar 

  27. B.H. Toby, R.B. Von Dreele, GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Cryst. 46(2), 544 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences program under Award Number DE-SC0019121. Use of the Center for Nanoscale Materials and Advanced Photon Source, both DOE Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuzi Liu or Hui Xiong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationship that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, D., Gabriel, E., Graff, K. et al. Thermal dynamics of P2-Na0.67Ni0.33Mn0.67O2 cathode materials for sodium ion batteries studied by in situ analysis. Journal of Materials Research 37, 1156–1163 (2022). https://doi.org/10.1557/s43578-022-00519-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00519-z

Navigation