Abstract
Nanoparticles (NP) with advanced optical or photothermal properties have been explored for potential cancer therapy applications. Gold (Au)-based nanomaterials exhibit superior photothermal properties among various Photothermal therapy (PTT) agents. NANOTORRID® material is superior in many ways, including it is composed of dielectric polymer polypropylene carbonate and gold, it has graphitic bands like G and D, its small size range of 20–30 nm, having tunable wavelength absorbance and need for a shorter duration of laser exposure or low material concentration to deliver desired therapeutic benefit. Here, we report a scalable single pot method to produce NANOTORRID® structures capable of intense heat generation within a short duration of 2 to 2.5 min of laser exposure due to multiple dielectric and gold interfaces. NANOTORRID® exhibits excellent photothermal properties as using 10 µg/mL concentration can reach effective temperature (43 °C) within only 2.5 min by absorbing a 430 mW 808 nm laser.
Graphical abstract
Similar content being viewed by others
Data availability
Relevant data generated or analysed during this study are included in this published article (and its supplementary information files).
References
S. Rajeshkumar, C. Malarkodi, G. Gnanajobitha, K. Paulkumar, M. Vanaja, C. Kannan, G. Annadurai, Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. J. Nanostruct. Chem. 3, 44 (2013)
H. Li, X. Liu, N. Huang, K. Ren, Q. Jin, J. Ji, “Mixed-Charge Self-Assembled Monolayers” as a facile method to design ph-induced aggregation of large gold nanoparticles for near-infrared photothermal cancer therapy. ACS Appl. Mater. Interfaces 6, 18930–18937 (2014)
M. Murakami, M.J. Ernsting, S.D. Li, Theranostic nanoparticles for cancer imaging and therapy. Nanomater. Drug Deliv. Imaging Tissue Eng. 155, 369–393 (2013)
D. Bechet, P. Couleaud, C. Frochot, M.L. Viriot, F. Guillemin, M. Barberi-Heyob, Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol. 26, 612–621 (2008)
J. Wang, W. Li, J. Zhu, Encapsulation of inorganic nanoparticles into block copolymer micellar aggregates: strategies and precise localization of nanoparticles. Polymer (Guildf) 55, 1079–1096 (2014)
A. Oyelere, Gold nanoparticles: from nanomedicine to nanosensing. Nanotechnol. Sci. Appl. 1, 45–66 (2008)
N.R. Jana, L. Gearheart, C.J. Murphy, Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem. Mater. 13, 2313–2322 (2001)
T. Patino, U. Mahajan, R. Palankar, N. Medvedev, J. Walowski, M. Münzenberg, J. Mayerle, M. Delcea, Multifunctional gold nanorods for selective plasmonic photothermal therapy in pancreatic cancer cells using ultra-short pulse near-infrared laser irradiation. Nanoscale 7, 5328–5337 (2015)
D. Philip, Rapid green synthesis of spherical gold nanoparticles using Mangifera Indica Leaf. Spectrochim. Acta Part A Mol. Biomol. Spectrosc 77, 807–810 (2010)
J.-P. Maria, M. Losego, D.N. Leonard, B. Laughlin, G. Duscher. Surface plasmon resonance in conducting metal oxide. J. Appl. Phys. 100, 054905 (2006)
R.D. Averitt, S.L. Westcott, N.J. Halas, Linear optical properties of gold nanoshells. J. Opt. Soc. Am. B 1999, 16 (1824)
M. Zapata, Á.S. Camacho Beltrán, A.G. Borisov, J. Aizpurua, Quantum effects in the optical response of extended plasmonic gaps: validation of the quantum corrected model in core-shell nanomatryushkas. Opt. Express 23, 8134 (2015)
W. Jia, J. Li, L. Jiang, Synthesis of highly branched gold nanodendrites with a narrow size distribution and tunable NIR and SERS using a multiamine surfactant. ACS Appl. Mater. Interfaces 5, 6886–6892 (2013)
L.C. Glangchai, M. Caldorera-Moore, L. Shi, K. Roy, Nanoimprint lithography based fabrication of shape-specific, enzymatically-triggered smart nanoparticles. J. Control. Release 125, 263–272 (2008)
C. Li, D. Li, G. Wan, J. Xu, W. Hou, Facile synthesis of concentrated gold nanoparticles with low size-distribution in water: temperature and PH controls. Nanoscale Res. Lett. 6, 1–10 (2011)
E.H. Ryu, J.H. Lee, Y.S. Lee, J.M. Gu, S. Huh, S.J. Lee, Size-controlled cubic coordination polymer nanoparticles from Chiral Dipyridyl Zn-Salen. Inorg. Chem. Commun. 14, 1648–1651 (2011)
X. Lu, H.Y. Tuan, B.A. Korgel, Y. Xia, Facile synthesis of gold nanoparticles with narrow size distribution by using AuCl or AuBr as the precursor. Chem. A Eur. J. 14, 1584–1591 (2008)
M. Nagalingam, V.N. Kalpana, R.V. Devi, A. Panneerselvam, Biosynthesis, characterization, and evaluation of bioactivities of leaf extract-mediated biocompatible gold nanoparticles from Alternanthera Bettzickiana. Biotechnol. Rep. 19, e00268 (2018)
A. Carattino, S. Khatua, M. Orrit, In situ tuning of gold nanorod plasmon through oxidative cyanide etching. Phys. Chem. Chem. Phys. 18, 15619–15624 (2016)
L. Huang, Z.R. Guo, M. Wang, N. Gu, Facile synthesis of gold nanoplates by citrate reduction of Aucl 4- at room Temperature. Top. Res. 17, 1405–1408 (2006)
G. Herrera, A. Padilla, S. Hernandez-Rivera, Surface enhanced Raman scattering (SERS) studies of gold and silver nanoparticles prepared by laser ablation. Nanomaterials 3, 158–172 (2013)
N. Li, P. Zhao, D. Astruc, Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew. Chem. Int. Ed. 53, 1756–1789 (2014)
C. Sauerbeck, M. Haderlein, B. Schu, W. Peukert, R.N.K. Taylor, B. Schürer, B. Braunschweig, R.N. Klupp Taylor, Shedding light on the growth of gold nanoshells. ACS Nano 8, 3088–3096 (2014)
M. Mandal, S. Kundu, S.K. Ghosh, S. Panigrahi, T.K. Sau, S.M. Yusuf, T. Pal, Magnetite nanoparticles with tunable gold or silver shell. J. Colloid Interface Sci. 286, 187–194 (2005)
W. Shi, Y. Sahoo, M.T. Swihart, P.N. Prasad, Gold nanoshells on polystyrene cores for control of surface plasmon resonance. Langmuir 21, 1610–1617 (2005)
X. Liu, C. Gao, J. Gu, Y. Jiang, X. Yang, S. Li, W. Gao, T. An, H. Duan, J. Fu et al., Hyaluronic acid stabilized iodine-containing nanoparticles with Au nanoshell coating for X-Ray CT imaging and photothermal therapy of tumors. ACS Appl. Mater. Interfaces 8, 27622–27631 (2016)
C.J. Huang, S.H. Chu, C.H. Li, T.R. Lee, Surface modification with zwitterionic cysteine betaine for nanoshell-assisted near-infrared plasmonic hyperthermia. Colloids Surf. B Biointerfaces 145, 291–300 (2016)
R. Bardhan, S. Mukherjee, N.A. Mirin, S.D. Levit, P. Nordlander, N.J. Halas, Nanospherein-a-nanoshell: a simple nanomatryushka. J. Phys. Chem. C 114, 7378–7383 (2010)
S. Balakrishnan, F.A. Bhat, A. Jagadeesan, Applications of gold nanoparticles in cancer, in Biomedical Engineering: Concepts, Methodologies, Tools, and Applications (2017), pp. 17–32
B. Liu, C. Li, Z. Cheng, Z. Hou, S. Huang, J. Lin, Functional nanomaterials for near infrared-triggered cancer therapy. Biomater. Sci. 4, 890–909 (2016)
H. Liu, D. Chen, F. Tang, G. Du, L. Li, X. Meng, W. Liang, Y. Zhang, X. Teng, Y. Li, Photothermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres. Nanotechnology 19, 455101 (2008)
A.M. Gobin, E.M. Watkins, E. Quevedo, V.L. Colvin, J.L. West, Near-infrared-resonant gold/gold sulfide nanoparticles as a photothermal cancer therapeutic agent. Small 6, 745–752 (2010)
L.C. Kennedy, L.R. Bickford, N.A. Lewinski, A.J. Coughlin, Y. Hu, E.S. Day, J.L. West, R.A. Drezek, A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7, 169–183 (2011)
S. Fazal, A. Jayasree, S. Sasidharan, M. Koyakutty, S.V. Nair, D. Menon, Green synthesis of anisotropic gold nanoparticles for photothermal therapy of cancer. ACS Appl. Mater. Interfaces 6, 8080–8089 (2014)
W. Cai, Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol. Sci. Appl. 1, 17–32 (2008)
S. Moraes Silva, R. Tavallaie, L. Sandiford, R.D. Tilley, J.J. Gooding, Gold coated magnetic nanoparticles: from preparation to surface modification for analytical and biomedical applications. Chem. Commun. 52, 7528–7540 (2016)
Z. Qin, Y. Wang, J. Randrianalisoa, V. Raeesi, W.C.W. Chan, W. Lipinski, J.C. Bischof, Quantitative comparison of photothermal heat generation between gold nanospheres and nanorods. Sci. Rep. 6, 1–13 (2016)
S. Jelveh, D.B. Chithrani, Gold nanostructures as a platform for combinational therapy in future cancer therapeutics. Cancers (Basel) 3, 1081–1110 (2011)
J. Wang, B. Dong, B. Chen, Z. Jiang, H. Song, Selective photothermal therapy for breast cancer with targeting peptide modified gold nanorods. Dalt. Trans. 41, 11134 (2012)
X. Deng, Y. Chen, Z. Cheng, K. Deng, P. Ma, Z. Hou, B. Liu, S. Huang, D. Jin, J. Lin, Rational design of a comprehensive cancer therapy platform using temperature-sensitive polymer grafted hollow gold nanospheres: simultaneous chemo/photothermal/photodynamic therapy triggered by a 650 nm laser with enhanced anti-tumor efficacy. Nanoscale 8, 6837–6850 (2016)
G. De, D. Kundu, Gold-nanocluster-doped inorganic-organic hybrid coatings on polycarbonate and isolation of shaped gold microcrystals from the coating sol. Chem. Mater. 13, 4239–4246 (2001)
T.K. Mandal, M.S. Fleming, D.R. Walt, Preparation of polymer coated gold nanoparticles by surface-confined living radical polymerization at ambient temperature. Nano Lett. 2, 3–7 (2002)
E. Rebollar, M. Sanz, S. Pérez, M. Hernández, I. Martín-Fabiani, D.R. Rueda, T.A. Ezquerra, C. Domingo, M. Castillejo, Gold coatings on polymer laser induced periodic surface structures: assessment as substrates for surface-enhanced Raman scattering. Phys. Chem. Chem. Phys. 14, 15699–15705 (2012)
Q. Tian, Q. Wang, K.X. Yao, B. Teng, J. Zhang, S. Yang, Y. Han, Multifunctional polypyrrole@Fe3O4 nanoparticles for dual-modal imaging and in vivo photothermal cancer therapy. Small 10, 1063–1068 (2014)
T. Cantu, B. Rodier, Z. Iszard, A. Kilian, V. Pattani, K. Walsh, K. Weber, J. Tunnell, T. Betancourt, J. Irvin, Electroactive polymer nanoparticles exhibiting photothermal properties. J. Vis. Exp. (2016). https://doi.org/10.3791/53631
T. Zhu, K. Vasilev, M. Kreiter, S. Mittler, W. Knoll, Surface modification of citratereduced colloidal gold nanoparticles with 2-mercaptosuccinic acid. Langmuir 19, 9518–9525 (2003)
V.P. Zharov, J.W. Kim, D.T. Curiel, M. Everts, Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy. Nanomed. Nanotechnol. Biol. Med. 1, 326–345 (2005)
E.C. Dreaden, M.A. MacKey, X. Huang, B. Kang, M.A. El-Sayed, Beating cancer in multiple ways using nanogold. Chem. Soc. Rev. 40, 3391–3404 (2011)
S. Wang, H. Xu, J. Ye, Plasmonic rod-in-shell nanoparticles for photothermal therapy. Phys. Chem. Chem. Phys. 16, 12275–12281 (2014)
K.C. Kwon, J.H. Ryu, J.H. Lee, E.J. Lee, I.C. Kwon, K. Kim, J. Lee, Proteinticle/gold core/shell nanoparticles for targeted cancer therapy without nanotoxicity. Adv. Mate.r 26, 6436–6441 (2014)
X. Zhong, Z. Lu, P. Valtchev, H. Wei, H. Zreiqat, F. Dehghani, Surface modification of Poly(Propylene Carbonate) by aminolysis and layer-by-layer assembly for enhanced cytocompatibility. Colloids Surf. B Biointerfaces 93, 75–84 (2012)
H.W. Fang, W.Y. Kao, P.I. Lin, G.W. Chang, Y.J. Hung, R.M. Chen, Effects of polypropylene carbonate/Poly(d, l-Lactic) acid/tricalcium phosphate elastic composites on improving osteoblast maturation. Ann. Biomed. Eng. 43, 1999–2009 (2015)
H. Niu, J. Mu, J. Zhang, P. Hu, P. Bo, Y. Wang, Comparative study of three types of polymer materials co-cultured with bone marrow mesenchymal stem cells for use as a myocardial patch in cardiomyocyte regeneration. J. Mater. Sci. Mater. Med. 24, 1535–1542 (2013)
L. Tian, L. Liu, L. Chen, N. Lu, H. Xu, Electrochemical determination of iodide on a vanadium oxide-polypropylene carbonate coated glassy carbon electrode. Talanta 66, 130–135 (2005)
Loctite, P.F. Xray, L. Helm, A.E. Merbach, M.L. Lauzon, R. Frayne, Eccosorb, D. Corning, L. Way, W.K.J. Renema et al., Dielectric materials chart—Eccostock. Tech. Reports AFML-TR-72-39 74-250 6, 633–641 (2010)
S. Xiao, J. Kolb, X.P. Lu, M. Laroussi, R.P. Joshi, K.H. Schoenbach, E. Schamiloglu, Electrical breakdown and recovery of water and propylene carbonate, in Digest of Technical Papers. International Pulsed Power Conference (2007), pp. 742–745
H. Wang, R. Zhao, Y. Li, H. Liu, F. Li, Y. Zhao, G. Nie, Aspect ratios of gold nanoshell capsules mediated melanoma ablation by synergistic photothermal therapy and chemotherapy. Nanomed. Nanotechnol. Biol. Med. 12, 439–448 (2016)
J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique, Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 70, 1–87 (2007)
M. Nanorods, J. Zuloaga, E. Prodan, P. Nordlander, Quantum plasmonics: optical properties optical properties and tunability of metallic nanorod. ACS Nano 4, 5269–5276 (2010)
J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique, Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 1, 54 (2006)
T.M. Act, Registration, C.F.O.R. Trade Marks Act 1999, 1–92 (1999)
R.K. Biroju, P.K. Giri, Defect enhanced efficient physical functionalization of graphene with gold nanoparticles probed by resonance Raman spectroscopy. J. Phys. Chem. C 118, 13833 (2014)
A. Kaniyoor, S. Ramaprabhu, A Raman spectroscopic investigation of graphite oxide derived graphene. AIP Adv. 2, 032183 (2012)
L. Bokobza, J.-L. Bruneel, M. Couzi, Raman spectra of carbon-based materials (from graphite to carbon black) and of some silicone composites. C 1, 77–94 (2015)
E.F. Antunes, A.O. Lobo, E.J. Corat, V.J. Trava-Airoldi, A.A. Martin, C. Veríssimo, Comparative Study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation. Carbon N. Y. 44, 2202 (2006)
A. Das, B. Chakraborty, A.K. Sood, Raman Spectroscopy of graphene on different substrates and influence of defects. Proc. Bull. Mater. Sci. 31, 579 (2008)
F. Rosenburg, E. Ionescu, N. Nicoloso, R. Riedel, High-temperature raman spectroscopy of nano-crystalline carbon in silicon oxycarbide. Materials (Basel) 11, 93 (2018)
I.S. Elashmawi, L.H. Gaabour, Raman, morphology and electrical behavior of nanocomposites based on PEO/PVDF with multi-walled carbon nanotubes. Results Phys. 5, 105–110 (2015)
L. Beqa, Z. Fan, A.K. Singh, D. Senapati, P.C. Ray, Gold nano-popcorn attached SWCNT hybrid nanomaterial for targeted diagnosis and photothermal therapy of human breast cancer cells. ACS Appl. Mater. Interfaces 3, 3316–3324 (2011)
A. Jorio, E.H.M. Ferreira, M.V.O. Moutinho, F. Stavale, C.A. Achete, R.B. Capaz, Measuring disorder in graphene with the G and D bands. Phys. Status Solidi Basic Res. 247, 2980 (2010)
A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B Condens. Matter Mater. Phys. (2001). https://doi.org/10.1103/PhysRevB.64.075414
M.L. Hause, Y. Heidi Yoon, A.S. Case, F.F. Crim, Dynamics at conical intersections: the influence of O-H stretching vibrations on the photodissociation of phenol. J. Chem. Phys. 128, 104307 (2008)
H. Guo, T. Yang, M. Yamamoto, L. Zhou, R. Ishikawa, K. Ueno, K. Tsukagoshi, Z. Zhang, M.S. Dresselhaus, R. Saito, Double resonance raman modes in monolayer and few layer MoTe2. Phys. Rev. B Condens. Matter Mater. Phys. 91, 205415 (2015)
S.G. Drapcho, J. Kim, X. Hong, C. Jin, S. Shi, S. Tongay, J. Wu, F. Wang, Apparent breakdown of Raman selection rule at valley exciton resonances in monolayer MoS2. Phys. Rev. B 95, 165417 (2017)
M. Endo, M.A. Pimenta, Origin of dispersive effects of the Raman d band in carbon materials. Phys. Rev. B Condens. Matter Mater. Phys. 59, 6585 (1999)
R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, M.S. Dresselhaus, Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 60, 413–550 (2011)
S. Berciaud, S. Ryu, L.E. Brus, T.F. Heinz, Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. Nano Lett. 9, 346 (2009)
Q. Qian, Z. Zhang, K.J. Chen, Layer-dependent second-order Raman intensity of Mo S2 and WS E2: influence of intervalley scattering. Phys. Rev. B 97, 165409 (2018)
C. Thomsen, S. Reich, Raman scattering in carbon nanotubes. Top. Appl. Phys. 108, 115 (2006)
R. Saito, A. Jorio, A.G. Souza Filho, G. Dresselhaus, M.S. Dresselhaus, A. Grüneis, L.G. Cançado, M.A. Pimenta, First and second-order resonance raman process in graphite and single wall carbon nanotubes. Jpn. J. Appl. Phys. 41, 4878 (2002)
A. Hill, S.A. Mikhailov, K. Ziegler, Dielectric function and plasmons in graphene. EPL Europhys. Lett. 87, 27005 (2009)
A.A.K. King, B.R. Davies, N. Noorbehesht, P. Newman, T.L. Church, A.T. Harris, J.M. Razal, A.I. Minett, A new Raman metric for the characterisation of graphene oxide and its derivatives. Sci. Rep. 6, 1–6 (2016)
J. Hong, M.K. Park, E.J. Lee, D. Lee, D.S. Hwang, S. Ryu, Origin of new broad Raman D and G peaks in annealed graphene. Sci. Rep. 3, 1–5 (2013)
T. Ando, Theory of electronic states and transport in carbon nanotubes. J. Phys. Soc. Jpn. 74, 777 (2005)
Y. Wang, D. Vasileva, S.P. Zustiak, I. Kuljanishvili, Raman spectroscopy enabled investigation of carbon nanotubes quality upon dispersion in aqueous environments. Biointerphases 12, 011004 (2017)
S.C.B. Myneni, S.J. Traina, G.A. Waychunas, T.J. Logan, Vibrational spectroscopy of functional group chemistry and arsenate coordination in Ettringite. Geochim. Cosmochim. Acta 62, 3499 (1998)
B.P. Vinayan, Z. Zhao-Karger, T. Diemant, V.S.K. Chakravadhanula, N.I. Schwarzburger, M.A. Cambaz, R.J. Behm, C. Kübel, M. Fichtner, Performance study of magnesium-sulfur battery using a graphene based sulfur composite cathode electrode and a nonnucleophilic Mg electrolyte. Nanoscale 8, 3296–3306 (2016)
R.M. Silverstein, F.X. Webster, D.J. Kiemle, Spectrometric Identification of Organic Compounds, 7th edn. (Wiley, New York, 2005)
R.M. Silverstein, F.X. Webster, D.J. Kiemle, Spectrometric identification of organic compounds. Microchem. J. 39, 546 (2005)
Y. León, I. Brito, G. Cárdenas, O. Godoy, Synthesis and characterizations of Ag, Cu and AgCu metallic nanoparticles stabilized by divalent sulfur ligands. J. Chil. Chem. Soc. 54, 51–54 (2009)
Y. Xu, D. Li, M. Liu, F. Niu, J. Liu, E. Wang, Enhanced-quantum yield sulfur/nitrogen co-doped fluorescent carbon nanodots produced from biomass enteromorpha prolifera: synthesis, posttreatment, applications and mechanism study. Sci. Rep. 7, 1–12 (2017)
L. Li, S. Shi, L. Song, L. Guo, Y. Wang, H. Ma, J. Hou, H. Wang, One-step synthesis of dimethyl carbonate from carbon dioxide, propylene oxide and methanol over alkali halides promoted by crown ethers. J. Organomet. Chem. 794, 231–236 (2015)
O.L. Chapman, Spectrometric identification of organic compounds. J. Am. Chem. Soc. 85, 3316 (1963)
L. Guo, H. Sato, T. Hashimoto, Y. Ozaki, FTIR study on hydrogen-bonding interactions in biodegradable polymer blends of Poly(3-Hydroxybutyrate) and Poly(4-Vinylphenol). Macromolecules 43, 3897 (2010)
M.J. Cecchini, M. Amiri, F.A. Dick, Analysis of cell cycle position in mammalian cells. J. Vis. Exp. (2012). https://doi.org/10.3791/3491
H. Park, J. Yang, ЌJ. Lee, ЌS. Haam, ЌI. Choi, K. Yoo, Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. ACS Nano 3, 2919–2926 (2009). https://doi.org/10.1021/nn900215k
X. Huang, M.A. El-Sayed, Plasmonic photo-thermal therapy (PPTT). Alex. J. Med. 47, 1–9 (2011)
M.P. Melancon, M. Zhou, C. Li, Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. Acc. Chem. Res. 44, 947–956 (2011)
H. Wang, J. Han, W. Lu, J. Zhang, J. Li, L. Jiang, Facile preparation of gold nanocages and hollow gold nanospheres via solvent thermal treatment and their surface plasmon resonance and photothermal properties. J. Colloid Interface Sci. 440, 236–244 (2015)
E. Kim, J. Yang, J. Choi, J.S. Suh, Y.M. Huh, S. Haam, Synthesis of gold nanorod-embedded polymeric nanoparticles by a nanoprecipitation method for use as photothermal agents. Nanotechnology 20, 365602 (2009)
G.N. Abdelrasoul, R. Magrassi, S. Dante, M. D’Amora, M.S. D’Abbusco, T. Pellegrino, A. Diaspro, PEGylated gold nanorods as optical trackers for biomedical applications: an in vivo and in vitro comparative study. Nanotechnology 27, 1–15 (2016)
P. Puvanakrishnan, J. Park, D. Chatterjee, S. Krishnan, J.W. Tunnell, In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy. Int. J. Nanomed. 7, 1251–1258 (2012)
P. Zhang, C. Hu, W. Ran, J. Meng, Q. Yin, Y. Li, Recent progress in light-triggered nanotheranostics for cancer treatment. Theranostics 6, 948–968 (2016)
P. Mondal, N. Salam, A. Mondal, K. Ghosh, K. Tuhina, S.M. Islam, A highly active recyclable gold-graphene nanocomposite material for oxidative esterification and Suzuki cross-coupling reactions in green pathway. J. Colloid Interface Sci. 459, 97–106 (2015)
Funding
Not applicable.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare no conflict of interest or other disclosures.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Jha, A., Ravichandran, G., De, A. et al. NANOTORRID®: Graphene-like properties of a gold/polypropylene nanocomposite and its photothermal application. Journal of Materials Research 37, 1183–1200 (2022). https://doi.org/10.1557/s43578-022-00518-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43578-022-00518-0