Skip to main content
Log in

NANOTORRID®: Graphene-like properties of a gold/polypropylene nanocomposite and its photothermal application

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanoparticles (NP) with advanced optical or photothermal properties have been explored for potential cancer therapy applications. Gold (Au)-based nanomaterials exhibit superior photothermal properties among various Photothermal therapy (PTT) agents. NANOTORRID® material is superior in many ways, including it is composed of dielectric polymer polypropylene carbonate and gold, it has graphitic bands like G and D, its small size range of 20–30 nm, having tunable wavelength absorbance and need for a shorter duration of laser exposure or low material concentration to deliver desired therapeutic benefit. Here, we report a scalable single pot method to produce NANOTORRID® structures capable of intense heat generation within a short duration of 2 to 2.5 min of laser exposure due to multiple dielectric and gold interfaces. NANOTORRID® exhibits excellent photothermal properties as using 10 µg/mL concentration can reach effective temperature (43 °C) within only 2.5 min by absorbing a 430 mW 808 nm laser.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

Relevant data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. S. Rajeshkumar, C. Malarkodi, G. Gnanajobitha, K. Paulkumar, M. Vanaja, C. Kannan, G. Annadurai, Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. J. Nanostruct. Chem. 3, 44 (2013)

    Google Scholar 

  2. H. Li, X. Liu, N. Huang, K. Ren, Q. Jin, J. Ji, “Mixed-Charge Self-Assembled Monolayers” as a facile method to design ph-induced aggregation of large gold nanoparticles for near-infrared photothermal cancer therapy. ACS Appl. Mater. Interfaces 6, 18930–18937 (2014)

    CAS  Google Scholar 

  3. M. Murakami, M.J. Ernsting, S.D. Li, Theranostic nanoparticles for cancer imaging and therapy. Nanomater. Drug Deliv. Imaging Tissue Eng. 155, 369–393 (2013)

    Google Scholar 

  4. D. Bechet, P. Couleaud, C. Frochot, M.L. Viriot, F. Guillemin, M. Barberi-Heyob, Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol. 26, 612–621 (2008)

    CAS  Google Scholar 

  5. J. Wang, W. Li, J. Zhu, Encapsulation of inorganic nanoparticles into block copolymer micellar aggregates: strategies and precise localization of nanoparticles. Polymer (Guildf) 55, 1079–1096 (2014)

    CAS  Google Scholar 

  6. A. Oyelere, Gold nanoparticles: from nanomedicine to nanosensing. Nanotechnol. Sci. Appl. 1, 45–66 (2008)

    Google Scholar 

  7. N.R. Jana, L. Gearheart, C.J. Murphy, Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem. Mater. 13, 2313–2322 (2001)

    CAS  Google Scholar 

  8. T. Patino, U. Mahajan, R. Palankar, N. Medvedev, J. Walowski, M. Münzenberg, J. Mayerle, M. Delcea, Multifunctional gold nanorods for selective plasmonic photothermal therapy in pancreatic cancer cells using ultra-short pulse near-infrared laser irradiation. Nanoscale 7, 5328–5337 (2015)

    CAS  Google Scholar 

  9. D. Philip, Rapid green synthesis of spherical gold nanoparticles using Mangifera Indica Leaf. Spectrochim. Acta Part A Mol. Biomol. Spectrosc 77, 807–810 (2010)

    Google Scholar 

  10. J.-P. Maria, M. Losego, D.N. Leonard, B. Laughlin, G. Duscher. Surface plasmon resonance in conducting metal oxide. J. Appl. Phys. 100, 054905 (2006)

    Google Scholar 

  11. R.D. Averitt, S.L. Westcott, N.J. Halas, Linear optical properties of gold nanoshells. J. Opt. Soc. Am. B 1999, 16 (1824)

    Google Scholar 

  12. M. Zapata, Á.S. Camacho Beltrán, A.G. Borisov, J. Aizpurua, Quantum effects in the optical response of extended plasmonic gaps: validation of the quantum corrected model in core-shell nanomatryushkas. Opt. Express 23, 8134 (2015)

    CAS  Google Scholar 

  13. W. Jia, J. Li, L. Jiang, Synthesis of highly branched gold nanodendrites with a narrow size distribution and tunable NIR and SERS using a multiamine surfactant. ACS Appl. Mater. Interfaces 5, 6886–6892 (2013)

    CAS  Google Scholar 

  14. L.C. Glangchai, M. Caldorera-Moore, L. Shi, K. Roy, Nanoimprint lithography based fabrication of shape-specific, enzymatically-triggered smart nanoparticles. J. Control. Release 125, 263–272 (2008)

    CAS  Google Scholar 

  15. C. Li, D. Li, G. Wan, J. Xu, W. Hou, Facile synthesis of concentrated gold nanoparticles with low size-distribution in water: temperature and PH controls. Nanoscale Res. Lett. 6, 1–10 (2011)

    Google Scholar 

  16. E.H. Ryu, J.H. Lee, Y.S. Lee, J.M. Gu, S. Huh, S.J. Lee, Size-controlled cubic coordination polymer nanoparticles from Chiral Dipyridyl Zn-Salen. Inorg. Chem. Commun. 14, 1648–1651 (2011)

    CAS  Google Scholar 

  17. X. Lu, H.Y. Tuan, B.A. Korgel, Y. Xia, Facile synthesis of gold nanoparticles with narrow size distribution by using AuCl or AuBr as the precursor. Chem. A Eur. J. 14, 1584–1591 (2008)

    CAS  Google Scholar 

  18. M. Nagalingam, V.N. Kalpana, R.V. Devi, A. Panneerselvam, Biosynthesis, characterization, and evaluation of bioactivities of leaf extract-mediated biocompatible gold nanoparticles from Alternanthera Bettzickiana. Biotechnol. Rep. 19, e00268 (2018)

    Google Scholar 

  19. A. Carattino, S. Khatua, M. Orrit, In situ tuning of gold nanorod plasmon through oxidative cyanide etching. Phys. Chem. Chem. Phys. 18, 15619–15624 (2016)

    CAS  Google Scholar 

  20. L. Huang, Z.R. Guo, M. Wang, N. Gu, Facile synthesis of gold nanoplates by citrate reduction of Aucl 4- at room Temperature. Top. Res. 17, 1405–1408 (2006)

    CAS  Google Scholar 

  21. G. Herrera, A. Padilla, S. Hernandez-Rivera, Surface enhanced Raman scattering (SERS) studies of gold and silver nanoparticles prepared by laser ablation. Nanomaterials 3, 158–172 (2013)

    CAS  Google Scholar 

  22. N. Li, P. Zhao, D. Astruc, Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew. Chem. Int. Ed. 53, 1756–1789 (2014)

    CAS  Google Scholar 

  23. C. Sauerbeck, M. Haderlein, B. Schu, W. Peukert, R.N.K. Taylor, B. Schürer, B. Braunschweig, R.N. Klupp Taylor, Shedding light on the growth of gold nanoshells. ACS Nano 8, 3088–3096 (2014)

    CAS  Google Scholar 

  24. M. Mandal, S. Kundu, S.K. Ghosh, S. Panigrahi, T.K. Sau, S.M. Yusuf, T. Pal, Magnetite nanoparticles with tunable gold or silver shell. J. Colloid Interface Sci. 286, 187–194 (2005)

    CAS  Google Scholar 

  25. W. Shi, Y. Sahoo, M.T. Swihart, P.N. Prasad, Gold nanoshells on polystyrene cores for control of surface plasmon resonance. Langmuir 21, 1610–1617 (2005)

    CAS  Google Scholar 

  26. X. Liu, C. Gao, J. Gu, Y. Jiang, X. Yang, S. Li, W. Gao, T. An, H. Duan, J. Fu et al., Hyaluronic acid stabilized iodine-containing nanoparticles with Au nanoshell coating for X-Ray CT imaging and photothermal therapy of tumors. ACS Appl. Mater. Interfaces 8, 27622–27631 (2016)

    CAS  Google Scholar 

  27. C.J. Huang, S.H. Chu, C.H. Li, T.R. Lee, Surface modification with zwitterionic cysteine betaine for nanoshell-assisted near-infrared plasmonic hyperthermia. Colloids Surf. B Biointerfaces 145, 291–300 (2016)

    CAS  Google Scholar 

  28. R. Bardhan, S. Mukherjee, N.A. Mirin, S.D. Levit, P. Nordlander, N.J. Halas, Nanospherein-a-nanoshell: a simple nanomatryushka. J. Phys. Chem. C 114, 7378–7383 (2010)

    CAS  Google Scholar 

  29. S. Balakrishnan, F.A. Bhat, A. Jagadeesan, Applications of gold nanoparticles in cancer, in Biomedical Engineering: Concepts, Methodologies, Tools, and Applications (2017), pp. 17–32

  30. B. Liu, C. Li, Z. Cheng, Z. Hou, S. Huang, J. Lin, Functional nanomaterials for near infrared-triggered cancer therapy. Biomater. Sci. 4, 890–909 (2016)

    CAS  Google Scholar 

  31. H. Liu, D. Chen, F. Tang, G. Du, L. Li, X. Meng, W. Liang, Y. Zhang, X. Teng, Y. Li, Photothermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres. Nanotechnology 19, 455101 (2008)

    Google Scholar 

  32. A.M. Gobin, E.M. Watkins, E. Quevedo, V.L. Colvin, J.L. West, Near-infrared-resonant gold/gold sulfide nanoparticles as a photothermal cancer therapeutic agent. Small 6, 745–752 (2010)

    CAS  Google Scholar 

  33. L.C. Kennedy, L.R. Bickford, N.A. Lewinski, A.J. Coughlin, Y. Hu, E.S. Day, J.L. West, R.A. Drezek, A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7, 169–183 (2011)

    CAS  Google Scholar 

  34. S. Fazal, A. Jayasree, S. Sasidharan, M. Koyakutty, S.V. Nair, D. Menon, Green synthesis of anisotropic gold nanoparticles for photothermal therapy of cancer. ACS Appl. Mater. Interfaces 6, 8080–8089 (2014)

    CAS  Google Scholar 

  35. W. Cai, Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol. Sci. Appl. 1, 17–32 (2008)

    CAS  Google Scholar 

  36. S. Moraes Silva, R. Tavallaie, L. Sandiford, R.D. Tilley, J.J. Gooding, Gold coated magnetic nanoparticles: from preparation to surface modification for analytical and biomedical applications. Chem. Commun. 52, 7528–7540 (2016)

    CAS  Google Scholar 

  37. Z. Qin, Y. Wang, J. Randrianalisoa, V. Raeesi, W.C.W. Chan, W. Lipinski, J.C. Bischof, Quantitative comparison of photothermal heat generation between gold nanospheres and nanorods. Sci. Rep. 6, 1–13 (2016)

    Google Scholar 

  38. S. Jelveh, D.B. Chithrani, Gold nanostructures as a platform for combinational therapy in future cancer therapeutics. Cancers (Basel) 3, 1081–1110 (2011)

    CAS  Google Scholar 

  39. J. Wang, B. Dong, B. Chen, Z. Jiang, H. Song, Selective photothermal therapy for breast cancer with targeting peptide modified gold nanorods. Dalt. Trans. 41, 11134 (2012)

    CAS  Google Scholar 

  40. X. Deng, Y. Chen, Z. Cheng, K. Deng, P. Ma, Z. Hou, B. Liu, S. Huang, D. Jin, J. Lin, Rational design of a comprehensive cancer therapy platform using temperature-sensitive polymer grafted hollow gold nanospheres: simultaneous chemo/photothermal/photodynamic therapy triggered by a 650 nm laser with enhanced anti-tumor efficacy. Nanoscale 8, 6837–6850 (2016)

    CAS  Google Scholar 

  41. G. De, D. Kundu, Gold-nanocluster-doped inorganic-organic hybrid coatings on polycarbonate and isolation of shaped gold microcrystals from the coating sol. Chem. Mater. 13, 4239–4246 (2001)

    CAS  Google Scholar 

  42. T.K. Mandal, M.S. Fleming, D.R. Walt, Preparation of polymer coated gold nanoparticles by surface-confined living radical polymerization at ambient temperature. Nano Lett. 2, 3–7 (2002)

    Google Scholar 

  43. E. Rebollar, M. Sanz, S. Pérez, M. Hernández, I. Martín-Fabiani, D.R. Rueda, T.A. Ezquerra, C. Domingo, M. Castillejo, Gold coatings on polymer laser induced periodic surface structures: assessment as substrates for surface-enhanced Raman scattering. Phys. Chem. Chem. Phys. 14, 15699–15705 (2012)

    CAS  Google Scholar 

  44. Q. Tian, Q. Wang, K.X. Yao, B. Teng, J. Zhang, S. Yang, Y. Han, Multifunctional polypyrrole@Fe3O4 nanoparticles for dual-modal imaging and in vivo photothermal cancer therapy. Small 10, 1063–1068 (2014)

    CAS  Google Scholar 

  45. T. Cantu, B. Rodier, Z. Iszard, A. Kilian, V. Pattani, K. Walsh, K. Weber, J. Tunnell, T. Betancourt, J. Irvin, Electroactive polymer nanoparticles exhibiting photothermal properties. J. Vis. Exp. (2016). https://doi.org/10.3791/53631

    Article  Google Scholar 

  46. T. Zhu, K. Vasilev, M. Kreiter, S. Mittler, W. Knoll, Surface modification of citratereduced colloidal gold nanoparticles with 2-mercaptosuccinic acid. Langmuir 19, 9518–9525 (2003)

    CAS  Google Scholar 

  47. V.P. Zharov, J.W. Kim, D.T. Curiel, M. Everts, Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy. Nanomed. Nanotechnol. Biol. Med. 1, 326–345 (2005)

    CAS  Google Scholar 

  48. E.C. Dreaden, M.A. MacKey, X. Huang, B. Kang, M.A. El-Sayed, Beating cancer in multiple ways using nanogold. Chem. Soc. Rev. 40, 3391–3404 (2011)

    CAS  Google Scholar 

  49. S. Wang, H. Xu, J. Ye, Plasmonic rod-in-shell nanoparticles for photothermal therapy. Phys. Chem. Chem. Phys. 16, 12275–12281 (2014)

    CAS  Google Scholar 

  50. K.C. Kwon, J.H. Ryu, J.H. Lee, E.J. Lee, I.C. Kwon, K. Kim, J. Lee, Proteinticle/gold core/shell nanoparticles for targeted cancer therapy without nanotoxicity. Adv. Mate.r 26, 6436–6441 (2014)

    CAS  Google Scholar 

  51. X. Zhong, Z. Lu, P. Valtchev, H. Wei, H. Zreiqat, F. Dehghani, Surface modification of Poly(Propylene Carbonate) by aminolysis and layer-by-layer assembly for enhanced cytocompatibility. Colloids Surf. B Biointerfaces 93, 75–84 (2012)

    CAS  Google Scholar 

  52. H.W. Fang, W.Y. Kao, P.I. Lin, G.W. Chang, Y.J. Hung, R.M. Chen, Effects of polypropylene carbonate/Poly(d, l-Lactic) acid/tricalcium phosphate elastic composites on improving osteoblast maturation. Ann. Biomed. Eng. 43, 1999–2009 (2015)

    Google Scholar 

  53. H. Niu, J. Mu, J. Zhang, P. Hu, P. Bo, Y. Wang, Comparative study of three types of polymer materials co-cultured with bone marrow mesenchymal stem cells for use as a myocardial patch in cardiomyocyte regeneration. J. Mater. Sci. Mater. Med. 24, 1535–1542 (2013)

    CAS  Google Scholar 

  54. L. Tian, L. Liu, L. Chen, N. Lu, H. Xu, Electrochemical determination of iodide on a vanadium oxide-polypropylene carbonate coated glassy carbon electrode. Talanta 66, 130–135 (2005)

    CAS  Google Scholar 

  55. Loctite, P.F. Xray, L. Helm, A.E. Merbach, M.L. Lauzon, R. Frayne, Eccosorb, D. Corning, L. Way, W.K.J. Renema et al., Dielectric materials chart—Eccostock. Tech. Reports AFML-TR-72-39 74-250 6, 633–641 (2010)

  56. S. Xiao, J. Kolb, X.P. Lu, M. Laroussi, R.P. Joshi, K.H. Schoenbach, E. Schamiloglu, Electrical breakdown and recovery of water and propylene carbonate, in Digest of Technical Papers. International Pulsed Power Conference (2007), pp. 742–745

  57. H. Wang, R. Zhao, Y. Li, H. Liu, F. Li, Y. Zhao, G. Nie, Aspect ratios of gold nanoshell capsules mediated melanoma ablation by synergistic photothermal therapy and chemotherapy. Nanomed. Nanotechnol. Biol. Med. 12, 439–448 (2016)

    Google Scholar 

  58. J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique, Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 70, 1–87 (2007)

    CAS  Google Scholar 

  59. M. Nanorods, J. Zuloaga, E. Prodan, P. Nordlander, Quantum plasmonics: optical properties optical properties and tunability of metallic nanorod. ACS Nano 4, 5269–5276 (2010)

    Google Scholar 

  60. J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique, Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 1, 54 (2006)

    Google Scholar 

  61. T.M. Act, Registration, C.F.O.R. Trade Marks Act 1999, 1–92 (1999)

  62. R.K. Biroju, P.K. Giri, Defect enhanced efficient physical functionalization of graphene with gold nanoparticles probed by resonance Raman spectroscopy. J. Phys. Chem. C 118, 13833 (2014)

    CAS  Google Scholar 

  63. A. Kaniyoor, S. Ramaprabhu, A Raman spectroscopic investigation of graphite oxide derived graphene. AIP Adv. 2, 032183 (2012)

    Google Scholar 

  64. L. Bokobza, J.-L. Bruneel, M. Couzi, Raman spectra of carbon-based materials (from graphite to carbon black) and of some silicone composites. C 1, 77–94 (2015)

    Google Scholar 

  65. E.F. Antunes, A.O. Lobo, E.J. Corat, V.J. Trava-Airoldi, A.A. Martin, C. Veríssimo, Comparative Study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation. Carbon N. Y. 44, 2202 (2006)

    CAS  Google Scholar 

  66. A. Das, B. Chakraborty, A.K. Sood, Raman Spectroscopy of graphene on different substrates and influence of defects. Proc. Bull. Mater. Sci. 31, 579 (2008)

    CAS  Google Scholar 

  67. F. Rosenburg, E. Ionescu, N. Nicoloso, R. Riedel, High-temperature raman spectroscopy of nano-crystalline carbon in silicon oxycarbide. Materials (Basel) 11, 93 (2018)

    Google Scholar 

  68. I.S. Elashmawi, L.H. Gaabour, Raman, morphology and electrical behavior of nanocomposites based on PEO/PVDF with multi-walled carbon nanotubes. Results Phys. 5, 105–110 (2015)

    Google Scholar 

  69. L. Beqa, Z. Fan, A.K. Singh, D. Senapati, P.C. Ray, Gold nano-popcorn attached SWCNT hybrid nanomaterial for targeted diagnosis and photothermal therapy of human breast cancer cells. ACS Appl. Mater. Interfaces 3, 3316–3324 (2011)

    CAS  Google Scholar 

  70. A. Jorio, E.H.M. Ferreira, M.V.O. Moutinho, F. Stavale, C.A. Achete, R.B. Capaz, Measuring disorder in graphene with the G and D bands. Phys. Status Solidi Basic Res. 247, 2980 (2010)

    CAS  Google Scholar 

  71. A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B Condens. Matter Mater. Phys. (2001). https://doi.org/10.1103/PhysRevB.64.075414

    Article  Google Scholar 

  72. M.L. Hause, Y. Heidi Yoon, A.S. Case, F.F. Crim, Dynamics at conical intersections: the influence of O-H stretching vibrations on the photodissociation of phenol. J. Chem. Phys. 128, 104307 (2008)

    Google Scholar 

  73. H. Guo, T. Yang, M. Yamamoto, L. Zhou, R. Ishikawa, K. Ueno, K. Tsukagoshi, Z. Zhang, M.S. Dresselhaus, R. Saito, Double resonance raman modes in monolayer and few layer MoTe2. Phys. Rev. B Condens. Matter Mater. Phys. 91, 205415 (2015)

    Google Scholar 

  74. S.G. Drapcho, J. Kim, X. Hong, C. Jin, S. Shi, S. Tongay, J. Wu, F. Wang, Apparent breakdown of Raman selection rule at valley exciton resonances in monolayer MoS2. Phys. Rev. B 95, 165417 (2017)

    Google Scholar 

  75. M. Endo, M.A. Pimenta, Origin of dispersive effects of the Raman d band in carbon materials. Phys. Rev. B Condens. Matter Mater. Phys. 59, 6585 (1999)

    Google Scholar 

  76. R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, M.S. Dresselhaus, Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 60, 413–550 (2011)

    CAS  Google Scholar 

  77. S. Berciaud, S. Ryu, L.E. Brus, T.F. Heinz, Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. Nano Lett. 9, 346 (2009)

    CAS  Google Scholar 

  78. Q. Qian, Z. Zhang, K.J. Chen, Layer-dependent second-order Raman intensity of Mo S2 and WS E2: influence of intervalley scattering. Phys. Rev. B 97, 165409 (2018)

    CAS  Google Scholar 

  79. C. Thomsen, S. Reich, Raman scattering in carbon nanotubes. Top. Appl. Phys. 108, 115 (2006)

    Google Scholar 

  80. R. Saito, A. Jorio, A.G. Souza Filho, G. Dresselhaus, M.S. Dresselhaus, A. Grüneis, L.G. Cançado, M.A. Pimenta, First and second-order resonance raman process in graphite and single wall carbon nanotubes. Jpn. J. Appl. Phys. 41, 4878 (2002)

    CAS  Google Scholar 

  81. A. Hill, S.A. Mikhailov, K. Ziegler, Dielectric function and plasmons in graphene. EPL Europhys. Lett. 87, 27005 (2009)

    Google Scholar 

  82. A.A.K. King, B.R. Davies, N. Noorbehesht, P. Newman, T.L. Church, A.T. Harris, J.M. Razal, A.I. Minett, A new Raman metric for the characterisation of graphene oxide and its derivatives. Sci. Rep. 6, 1–6 (2016)

    CAS  Google Scholar 

  83. J. Hong, M.K. Park, E.J. Lee, D. Lee, D.S. Hwang, S. Ryu, Origin of new broad Raman D and G peaks in annealed graphene. Sci. Rep. 3, 1–5 (2013)

    Google Scholar 

  84. T. Ando, Theory of electronic states and transport in carbon nanotubes. J. Phys. Soc. Jpn. 74, 777 (2005)

    CAS  Google Scholar 

  85. Y. Wang, D. Vasileva, S.P. Zustiak, I. Kuljanishvili, Raman spectroscopy enabled investigation of carbon nanotubes quality upon dispersion in aqueous environments. Biointerphases 12, 011004 (2017)

    Google Scholar 

  86. S.C.B. Myneni, S.J. Traina, G.A. Waychunas, T.J. Logan, Vibrational spectroscopy of functional group chemistry and arsenate coordination in Ettringite. Geochim. Cosmochim. Acta 62, 3499 (1998)

    CAS  Google Scholar 

  87. B.P. Vinayan, Z. Zhao-Karger, T. Diemant, V.S.K. Chakravadhanula, N.I. Schwarzburger, M.A. Cambaz, R.J. Behm, C. Kübel, M. Fichtner, Performance study of magnesium-sulfur battery using a graphene based sulfur composite cathode electrode and a nonnucleophilic Mg electrolyte. Nanoscale 8, 3296–3306 (2016)

    CAS  Google Scholar 

  88. R.M. Silverstein, F.X. Webster, D.J. Kiemle, Spectrometric Identification of Organic Compounds, 7th edn. (Wiley, New York, 2005)

    Google Scholar 

  89. R.M. Silverstein, F.X. Webster, D.J. Kiemle, Spectrometric identification of organic compounds. Microchem. J. 39, 546 (2005)

    Google Scholar 

  90. Y. León, I. Brito, G. Cárdenas, O. Godoy, Synthesis and characterizations of Ag, Cu and AgCu metallic nanoparticles stabilized by divalent sulfur ligands. J. Chil. Chem. Soc. 54, 51–54 (2009)

    Google Scholar 

  91. Y. Xu, D. Li, M. Liu, F. Niu, J. Liu, E. Wang, Enhanced-quantum yield sulfur/nitrogen co-doped fluorescent carbon nanodots produced from biomass enteromorpha prolifera: synthesis, posttreatment, applications and mechanism study. Sci. Rep. 7, 1–12 (2017)

    Google Scholar 

  92. L. Li, S. Shi, L. Song, L. Guo, Y. Wang, H. Ma, J. Hou, H. Wang, One-step synthesis of dimethyl carbonate from carbon dioxide, propylene oxide and methanol over alkali halides promoted by crown ethers. J. Organomet. Chem. 794, 231–236 (2015)

    CAS  Google Scholar 

  93. O.L. Chapman, Spectrometric identification of organic compounds. J. Am. Chem. Soc. 85, 3316 (1963)

    Google Scholar 

  94. L. Guo, H. Sato, T. Hashimoto, Y. Ozaki, FTIR study on hydrogen-bonding interactions in biodegradable polymer blends of Poly(3-Hydroxybutyrate) and Poly(4-Vinylphenol). Macromolecules 43, 3897 (2010)

    CAS  Google Scholar 

  95. M.J. Cecchini, M. Amiri, F.A. Dick, Analysis of cell cycle position in mammalian cells. J. Vis. Exp. (2012). https://doi.org/10.3791/3491

    Article  Google Scholar 

  96. H. Park, J. Yang, ЌJ. Lee, ЌS. Haam, ЌI. Choi, K. Yoo, Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. ACS Nano 3, 2919–2926 (2009). https://doi.org/10.1021/nn900215k

    Article  CAS  Google Scholar 

  97. X. Huang, M.A. El-Sayed, Plasmonic photo-thermal therapy (PPTT). Alex. J. Med. 47, 1–9 (2011)

    CAS  Google Scholar 

  98. M.P. Melancon, M. Zhou, C. Li, Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. Acc. Chem. Res. 44, 947–956 (2011)

    CAS  Google Scholar 

  99. H. Wang, J. Han, W. Lu, J. Zhang, J. Li, L. Jiang, Facile preparation of gold nanocages and hollow gold nanospheres via solvent thermal treatment and their surface plasmon resonance and photothermal properties. J. Colloid Interface Sci. 440, 236–244 (2015)

    CAS  Google Scholar 

  100. E. Kim, J. Yang, J. Choi, J.S. Suh, Y.M. Huh, S. Haam, Synthesis of gold nanorod-embedded polymeric nanoparticles by a nanoprecipitation method for use as photothermal agents. Nanotechnology 20, 365602 (2009)

    Google Scholar 

  101. G.N. Abdelrasoul, R. Magrassi, S. Dante, M. D’Amora, M.S. D’Abbusco, T. Pellegrino, A. Diaspro, PEGylated gold nanorods as optical trackers for biomedical applications: an in vivo and in vitro comparative study. Nanotechnology 27, 1–15 (2016)

    Google Scholar 

  102. P. Puvanakrishnan, J. Park, D. Chatterjee, S. Krishnan, J.W. Tunnell, In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy. Int. J. Nanomed. 7, 1251–1258 (2012)

    CAS  Google Scholar 

  103. P. Zhang, C. Hu, W. Ran, J. Meng, Q. Yin, Y. Li, Recent progress in light-triggered nanotheranostics for cancer treatment. Theranostics 6, 948–968 (2016)

    CAS  Google Scholar 

  104. P. Mondal, N. Salam, A. Mondal, K. Ghosh, K. Tuhina, S.M. Islam, A highly active recyclable gold-graphene nanocomposite material for oxidative esterification and Suzuki cross-coupling reactions in green pathway. J. Colloid Interface Sci. 459, 97–106 (2015)

    CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abhijit De or Rohit Srivastava.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest or other disclosures.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3847 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, A., Ravichandran, G., De, A. et al. NANOTORRID®: Graphene-like properties of a gold/polypropylene nanocomposite and its photothermal application. Journal of Materials Research 37, 1183–1200 (2022). https://doi.org/10.1557/s43578-022-00518-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00518-0

Keywords

Navigation