Skip to main content
Log in

Solidified behavior and microstructure of high strength Al–Mg alloy under electromagnetic field simulated by direct current

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Direct current was applied to Al–Mg alloy during solidification and the effect of current density on the microstructure was investigated. It was found that during solidification, the grain size first decreases and then increases. The length of columnar crystal near the positive electrode first increases and then decreases. When the current density is increased from 0 to 25 mA/mm2, the grain size of α-Al decreases gradually and the length of columnar grain near the positive electrode increases. As the current density is greater than 25 mA/mm2, the grain size of α-Al increases gradually and the length of columnar grain near the positive electrode decreases gradually. The change of columnar crystal length in the negative region is opposite to that in the positive region. The mechanical properties of the alloy under electromagnetic recombination were tested. The characteristics of grain refinement and growth are discussed from the perspectives of nucleation and growth, which reflects the common influence of Peltier effect and Joule effect on solidification structure.

Graphical abstract

Direct current was applied to Al–Mg alloy during solidification. The results showed that with the increase of current density from 0 to 25 mA/mm2, the grain size of α-Al decreases gradually, the length of columnar crystal region near the positive electrode increases, and the length of columnar crystal region near the negative electrode decreases. When the current density is greater than 25 mA/mm2, with the increase of current density, with the increase of α-Al grain size, the length of columnar crystal region near the positive electrode decreases and the length of columnar crystal region near the negative electrode increases. Combined with Peltier effect and Joule effect, the characteristics of grain refinement and growth are discussed from the perspective of nucleation and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. F. Khodabakhshi, A.P. Gerlich, P. Švec, Fabrication of a high strength ultra-fine grained Al-Mg-SiC nanocomposite by multi-step friction-stir processing. Mater. Sci. Eng. A (2017). https://doi.org/10.1016/j.msea.2017.05.065

    Article  Google Scholar 

  2. T. Shi, C. Wang, G. Mi, F. Yan, A study of microstructure and mechanical properties of aluminum alloy using laser cleaning. J. Manuf. Processes 42, 60–66 (2019). https://doi.org/10.1016/j.jmapro.2019.04.015

    Article  Google Scholar 

  3. U. Bhandari, C. Zhang, S. Yang, Mechanical and thermal properties of low-density Al20+xCr20-xMo20-yTi20V20+y alloys. Curr. Comput.-Aided Drug Des. 10(4), 278 (2020). https://doi.org/10.3390/cryst10040278

    Article  CAS  Google Scholar 

  4. A.H. Ettefagh, C. Zeng, S. Guo, J. Raush, Corrosion behavior of additively manufactured Ti-6Al-4V parts and the effect of post annealing. Addit. Manufact. (2019). https://doi.org/10.1016/j.addma.2019.05.011

    Article  Google Scholar 

  5. L. Tang, X. Peng, J. Huang, A. Ma, Y. Deng, G. Xu, Microstructure and mechanical properties of severely deformed Al-Mg-Sc-Zr alloy and their evolution during annealing. Mater. Sci. Eng., A (2018). https://doi.org/10.1016/j.msea.2018.12.063

    Article  Google Scholar 

  6. R. Guan, D. Tie, Z. Li, Y. An, X. Wang, Q. Li, X. Chen, Microstructure evolution and mechanical property improvement of aluminum alloys with high magnesium content during continuous rheo-extrusion. Mater. Sci. Eng. 738, 31–37 (2018). https://doi.org/10.1016/j.msea.2018.09.090

    Article  CAS  Google Scholar 

  7. X. Li, W. Xi, H. Yan, J. Chen, B. Su, M. Song, Z. Li, Y. Li, Dynamic recrystallization behaviors of high Mg alloyed Al-Mg alloy during high strain rate rolling deformation. Mater. Sci. Eng. A 753, 59–69 (2019). https://doi.org/10.1016/j.msea.2019.03.028

    Article  CAS  Google Scholar 

  8. M. Zha, Y. Li, R.H. Mathiesen, R. BjøRge, H.J. Roven, Microstructure evolution and mechanical behavior of a binary Al-7Mg alloy processed by equal-channel angular pressing. Acta Mater. 84, 42–54 (2015). https://doi.org/10.1016/j.actamat.2014.10.025

    Article  CAS  Google Scholar 

  9. G.R. Cui, Z.Y. Ma, S.X. Li, The origin of non-uniform microstructure and its effects on the mechanical properties of a friction stir processed Al–Mg alloy. Acta Mater. 57(19), 5718–5729 (2009). https://doi.org/10.1016/j.actamat.2009.07.065

    Article  CAS  Google Scholar 

  10. M. Rashad, Asif, pan, fusheng, room temperature mechanical properties of Mg-Cu-Al alloys synthesized using powder metallurgy method. Mater. Sci. Eng. A Struct. Mater. Prop. Misrostructure Process. (2015). https://doi.org/10.1016/j.msea.2015.07.061

    Article  Google Scholar 

  11. C.N. He, N.Q. Zhao, C.S. Shi, S.Z. Song, Mechanical properties and microstructures of carbon nanotube-reinforced Al matrix composite fabricated by in situ chemical vapor deposition. J. Alloy. Compd. 487(1–2), 258–262 (2009). https://doi.org/10.1016/j.jallcom.2009.07.099

    Article  CAS  Google Scholar 

  12. Y. Xu, D. Casari, Q. Du, R.H. Mathiesen, L. Arnberg, Y. Li, Heterogeneous nucleation and grain growth of inoculated aluminium alloys: an integrated study by in-situ X-radiography and numerical modelling. Acta Mater. (2017). https://doi.org/10.1016/j.actamat.2017.08.053

    Article  Google Scholar 

  13. Y. Wang, C.M. Fang, L. Zhou, T. Hashimoto, Z. Fan, Mechanism for Zr poisoning of Al-Ti-B based grain refiners. Acta Mater. (2018). https://doi.org/10.1016/j.actamat.2018.10.056

    Article  Google Scholar 

  14. Y. Xu, D. Casari, R.H. Mathiesen, Y. Li, Revealing the heterogeneous nucleation behavior of equiaxed grains of inoculated Al alloys during directional solidification. Acta Mater. (2018). https://doi.org/10.1016/j.actamat.2018.02.058

    Article  Google Scholar 

  15. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation. Prog. Mater Sci. 45(2), 103–189 (2000). https://doi.org/10.1016/S0079-6425(99)00007-9

    Article  CAS  Google Scholar 

  16. S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, T.G. Langdon, Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al–Mg alloys. Acta Mater. (2002). https://doi.org/10.1016/S1359-6454(01)00368-8

    Article  Google Scholar 

  17. Z.C. Wang, P.B. Prangnell, Microstructure refinement and mechanical properties of severely deformed Al–Mg–Li alloys. Mater. Sci. Eng., A 328(1–2), 87–97 (2002). https://doi.org/10.1016/S0921-5093(01)01681-1

    Article  Google Scholar 

  18. H.T. Li, Y. Wang, Z. Fan, Mechanisms of enhanced heterogeneous nucleation during solidification in binary Al-Mg alloys. Acta Mater. (2012). https://doi.org/10.1016/j.actamat.2011.11.044

    Article  Google Scholar 

  19. S.C. Hogg, I.G. Palmer, L.G. Thomas, P.S. Grant, Processing, microstructure and property aspects of a spraycast Al-Mg-Li-Zr alloy. Acta Mater. (2007). https://doi.org/10.1016/j.actamat.2006.10.057

    Article  Google Scholar 

  20. Y. Zhou, J. Li, S. Nutt, E.J. Lavernia, Spray forming of ultra-fine SiC particle reinforced 5182 Al-Mg. J. Mater. Sci. 35(16), 4015–4023 (2000). https://doi.org/10.1023/A:1004873918432

    Article  CAS  Google Scholar 

  21. A. Prodhan, C.S. Sivaramakrishnan, A.K. Chakrabarti, Solidification of aluminum in electric field. Metall. and Mater. Trans. B. 32(2), 372–378 (2001). https://doi.org/10.1007/s11663-001-0060-4

    Article  Google Scholar 

  22. D. Räbiger, Y. Zhang, V. Galindo, S. Franke, B. Willers, The relevance of melt convection to grain refinement in Al–Si alloys solidified under the impact of electric currents. Acta Mater. (2014). https://doi.org/10.1016/j.actamat.2014.07.037

    Article  Google Scholar 

  23. J. Li, S. Li, L. Jin, H. Lin, Modification of solidification structures by pulse electric discharging. Scr. Metall. Mater. 31(12), 1691–1694 (1985). https://doi.org/10.1016/0956-716X(94)90465-0

    Article  Google Scholar 

  24. X. Liao, Q. Zhai, J. Luo, W. Chen, Y. Gong, Refining mechanism of the electric current pulse on the solidification structure of pure aluminum. Acta Mater. 55(9), 3103–3109 (2007). https://doi.org/10.1016/j.actamat.2007.01.014

    Article  CAS  Google Scholar 

  25. C. Song, Y. Guo, Y. Zhang, H. Zheng, Y. Meng, Q. Han, Q. Zhai, Effect of currents on the microstructure of directionally solidified Al–4.5 wt% Cu alloy. J. Cryst. Growth 324(1), 235–242 (2011). https://doi.org/10.1016/j.jcrysgro.2011.03.025

    Article  CAS  Google Scholar 

  26. L. Jie, J. Ma, Y. Gao, Q. Zhai, Research on solidification structure refinement of pure aluminum by electric current pulse with parallel electrodes. Mater. Sci. Eng., A 490(1–2), 452–456 (2008). https://doi.org/10.1016/j.msea.2008.01.052

    Article  CAS  Google Scholar 

  27. J. Ma, L. Jie, Y. Gao, Q. Zhai, Grain refinement of pure Al with different electric current pulse modes. Mater. Lett. 63(1), 142–144 (2009). https://doi.org/10.1016/j.matlet.2008.09.036

    Article  CAS  Google Scholar 

  28. J.W. Fu, Y.S. Yang, Formation of the solidified microstructure of Mg–Al–Zn alloy under a low-voltage pulsed magnetic field. J. Mater. Res. 26(14), 1688–1695 (2011). https://doi.org/10.1557/jmr.2011.159

    Article  CAS  Google Scholar 

  29. J.W. Fu, Y.S. Yang, Microstructure and mechanical properties of Mg-Al-Zn alloy under a low-voltage pulsed magnetic field. Mater. Lett. 67(1), 252–255 (2012). https://doi.org/10.1016/j.matlet.2011.09.021

    Article  CAS  Google Scholar 

  30. T. Wang, J. Xu, T. Xiao, H. Xie, J. Li, T. Li, Z. Cao, Evolution of dendrite morphology of a binary alloy under an applied electric current: an in situ observation. Phys. Rev. E: Stat., Nonlin, Soft Matter Phys. 81(4), 042601 (2010). https://doi.org/10.1103/PhysRevE.81.042601

    Article  CAS  Google Scholar 

  31. Grain nucleation and growth behavior of a Sn-Pb alloy affected by direct current: an in situ investigation. J. Mater. Sci. Technol. 10(v.33) (2017) 70–76. CNKI:SUN:CLKJ.0.2017–10–009

  32. A.K. Misra, A novel solidification technique of metals and alloys: under the influence of applied potential. Metall. Trans. A 16(7), 1354–1355 (1985). https://doi.org/10.1007/BF02670340

    Article  Google Scholar 

  33. L. Song, X. Tian, Y. Yang, J. Qin, X. Lin, Probing the microstructure in pure Al & Cu melts: theory meets experiment. Front Chem (2020). https://doi.org/10.3389/fchem.2020.00607

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Stable Support Foundation of State Administration of Science Technology and Industry for National Defense (JB11-12), Key research and development projects in Anhui Province (No. 202004a05020070), the Key Research and Development Program of Shanxi (No. 201903D421080), Natural Science Foundation for Young Scientists of Shanxi Province (No. 201801D221148).

Funding

The Stable Support Foundation of State Administration of Science Technology and Industry for National Defense (JB11-12), Key research and development projects in Anhui Province (No. 202004a05020070), the Key Research and Development Program of Shanxi (No. 201903D421080), Natural Science Foundation for Young Scientists of Shanxi Province (No. 201801D221148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, H., Bai, X., Wang, Y. et al. Solidified behavior and microstructure of high strength Al–Mg alloy under electromagnetic field simulated by direct current. Journal of Materials Research 37, 1115–1124 (2022). https://doi.org/10.1557/s43578-022-00515-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00515-3

Navigation