Skip to main content
Log in

Quasi in situ observation of twinning evolution during strain path change in magnesium alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Tensile twinning plays an important role in the magnesium alloys. In this work, the microstructures and the twinning behaviors in a rolled AZ31 magnesium alloy have been investigated during strain path change using quasi in situ electron-backscattered diffraction method. The results show that detwinning can only occur in grains with certain orientations and is not prevalent in this case. Under compressive strain along the rolling direction, single twin variant with the highest Schmid factor value can be activated, while under re-compressive strain along the transverse direction, several more types of twin variants can be activated. The activation of \(\left\{ {10\bar{1}2} \right\} - \left\{ {10\bar{1}2} \right\}\) double twin has also been observed during strain path change. The double twin activation confirms that one twin variant cannot transmit through another twin variant, but forms an “apparent crossing” twin structure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M.K. Kulekci, Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol. 39(9–10), 851 (2008)

    Article  Google Scholar 

  2. Z. Zeng, N. Stanford, C.H.J. Davies, J.-F. Nie, N. Birbilis, Magnesium extrusion alloys: a review of developments and prospects. Int. Mater. Rev. 64(1), 27 (2019)

    Article  CAS  Google Scholar 

  3. H. Pan, Y. Ren, H. Fu, H. Zhao, W. Liqing, X. Meng, G. Qin, Recent developments in rare-earth free wrought magnesium alloys having high strength: a review. J. Alloys Compd. 663, 321 (2016)

    Article  CAS  Google Scholar 

  4. Z. Wu, W.A. Curtin, The origins of high hardening and low ductility in magnesium. Nature 526(7571), 62 (2015)

    Article  CAS  Google Scholar 

  5. C.D. Barrett, A. Imandoust, H. El Kadiri, The effect of rare earth element segregation on grain boundary energy and mobility in magnesium and ensuing texture weakening. Scr. Mater. 146, 46 (2018)

    Article  CAS  Google Scholar 

  6. I. Basu, T. Al-Samman, Twin recrystallization mechanisms in magnesium-rare earth alloys. Acta Mater. 96, 111 (2015)

    Article  CAS  Google Scholar 

  7. J. Bohlen, J. Wendt, M. Nienaber, K.U. Kainer, L. Stutz, D. Letzig, Calcium and zirconium as texture modifiers during rolling and annealing of magnesium–zinc alloys. Mater. Charact. 101, 144 (2015)

    Article  CAS  Google Scholar 

  8. B. Zhang, Y. Wang, L. Geng, C. Lu, Effects of calcium on texture and mechanical properties of hot-extruded Mg–Zn–Ca alloys. Mater. Sci. Eng. A 539, 56 (2012)

    Article  CAS  Google Scholar 

  9. D. Guan, W.M. Rainforth, J. Gao, J. Sharp, B. Wynne, L. Ma, Individual effect of recrystallisation nucleation sites on texture weakening in a magnesium alloy: part 1- double twins. Acta Mater. 135, 14 (2017)

    Article  CAS  Google Scholar 

  10. D. Guan, W.M. Rainforth, L. Ma, B. Wynne, J. Gao, Twin recrystallization mechanisms and exceptional contribution to texture evolution during annealing in a magnesium alloy. Acta Mater. 126, 132 (2017)

    Article  CAS  Google Scholar 

  11. D. Song, T. Zhou, J. Tu, L. Shi, B. Song, L. Hu, M. Yang, Q. Chen, L. Lu, Improved stretch formability of AZ31 sheet via texture control by introducing a continuous bending channel into equal channel angular rolling. J. Mater. Process. Technol. 259, 380 (2018)

    Article  CAS  Google Scholar 

  12. M.G. Jiang, C. Xu, H. Yan, G.H. Fan, T. Nakata, C.S. Lao, R.S. Chen, S. Kamado, E.H. Han, B.H. Lu, Unveiling the formation of basal texture variations based on twinning and dynamic recrystallization in AZ31 magnesium alloy during extrusion. Acta Mater. 157, 53 (2018)

    Article  CAS  Google Scholar 

  13. D. Guan, B. Wynne, J. Gao, Y. Huang, W.M. Rainforth, Basal slip mediated tension twin variant selection in magnesium WE43 alloy. Acta Mater. 170, 1 (2019)

    Article  Google Scholar 

  14. H. El Kadiri, C.D. Barrett, J. Wang, C.N. Tomé, Why are 10 1 ¯ 2 twins profuse in magnesium? Acta Mater. 85, 354 (2015)

    Article  Google Scholar 

  15. D. Hou, T. Liu, M. Shi, H. Wen, H. Zhao, Deformation mechanisms in a rolled magnesium alloy under tension along the rolling direction. Microsc. Microanal. 24(3), 207 (2018)

    Article  CAS  Google Scholar 

  16. M.R. Barnett, M.D. Nave, A. Ghaderi, Yield point elongation due to twinning in a magnesium alloy. Acta Mater. 60(4), 1433 (2012)

    Article  CAS  Google Scholar 

  17. Z. Ding, W. Liu, H. Sun, S. Li, D. Zhang, Y. Zhao, E.J. Lavernia, Y. Zhu, Origins and dissociation of pyramidal dislocations in magnesium and its alloys. Acta Mater. 146, 265 (2018)

    Article  CAS  Google Scholar 

  18. B.-Y. Liu, F. Liu, N. Yang, X.-B. Zhai, L. Zhang, Y. Yang, B. Li, J. Li, E. Ma, J.-F. Nie, Z.-W. Shan, Large plasticity in magnesium mediated by pyramidal dislocations. Science 365(6448), 73 (2019)

    Article  CAS  Google Scholar 

  19. Y. Bu, Z. Li, J. Liu, H. Wang, D. Raabe, W. Yang, Nonbasal slip systems enable a strong and ductile hexagonal-close-packed high-entropy phase. Phys. Rev. Lett. 122(7), 075502 (2019)

    Article  CAS  Google Scholar 

  20. D. Hou, Y. Zhu, H. Wen, Roles of twinning and slipping in tensile anisotropy of rolled Mg–3Al–Zn alloy. Mater. Sci. Eng. A 823, 141748 (2021)

    Article  CAS  Google Scholar 

  21. J.C. Stinville, E.R. Yao, P.G. Callahan, J. Shin, F. Wang, M.P. Echlin, T.M. Pollock, D.S. Gianola, Dislocation dynamics in a nickel-based superalloy via in-situ transmission scanning electron microscopy. Acta Mater. 168, 152 (2019)

    Article  CAS  Google Scholar 

  22. S. Kondo, T. Mitsuma, N. Shibata, Y. Ikuhara, Direct observation of individual dislocation interaction processes with grain boundaries. Sci. Adv. 2(11), e1501926 (2016)

    Article  Google Scholar 

  23. H. Fan, J.A. El-Awady, Towards resolving the anonymity of pyramidal slip in magnesium. Mater. Sci. Eng. A 644, 318 (2015)

    Article  CAS  Google Scholar 

  24. H. Lim, J.D. Carroll, J.R. Michael, C.C. Battaile, S.R. Chen, J.M.D. Lane, Investigating active slip planes in tantalum under compressive load: crystal plasticity and slip trace analyses of single crystals. Acta Mater. 185, 1 (2020)

    Article  CAS  Google Scholar 

  25. C.M. Cepeda-Jimenez, J.M. Molina-Aldareguia, M.T. Perez-Prado, Effect of grain size on slip activity in pure magnesium polycrystals. Acta Mater. 84, 443 (2015)

    Article  CAS  Google Scholar 

  26. I. Basu, T. Al-Samman, Competitive twinning behavior in magnesium and its impact on recrystallization and texture formation. Mater. Sci. Eng. A 707, 232 (2017)

    Article  CAS  Google Scholar 

  27. H. Fan, S. Aubry, A. Arsenlis, J.A. El-Awady, Orientation influence on grain size effects in ultrafine-grained magnesium. Scr. Mater. 97, 25 (2015)

    Article  CAS  Google Scholar 

  28. D. Culbertson, Q. Yu, Y. Jiang, In situ observation of cross-grain twin pair formation in pure magnesium. Philos. Mag. Lett. 98(4), 139 (2018)

    Article  CAS  Google Scholar 

  29. M.A. Lopez-Sanchez, A. Tommasi, F. Barou, R. Quey, Dislocation-driven recrystallization in AZ31B magnesium alloy imaged by quasi-in situ EBSD in annealing experiments. Mater. Charact. 165, 110382 (2020)

    Article  CAS  Google Scholar 

  30. S.W. Lee, S.H. Park, Static recrystallization mechanism in cold-rolled magnesium alloy with off-basal texture based on quasi in situ EBSD observations. J. Alloys Compd. 844, 156185 (2020)

    Article  CAS  Google Scholar 

  31. H.J. Yang, S.M. Yin, C.X. Huang, Z.F. Zhang, S.D. Wu, S.X. Li, Y.D. Liu, EBSD study on deformation twinning in AZ31 magnesium alloy during quasi-in-situ compression. Adv. Eng. Mater. 10(10), 955 (2008)

    Article  CAS  Google Scholar 

  32. A. Ghaderi, M.R. Barnett, Sensitivity of deformation twinning to grain size in titanium and magnesium. Acta Mater. 59(20), 7824 (2011)

    Article  CAS  Google Scholar 

  33. J. Wang, M.R.G. Ferdowsi, S.R. Kada, C.R. Hutchinson, M.R. Barnett, Influence of precipitation on yield elongation in Mg-Zn alloys. Scr. Mater. 160, 5 (2019)

    Article  CAS  Google Scholar 

  34. G. Proust, C.N. Tomé, A. Jain, S.R. Agnew, Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31. Int. J. Plast 25(5), 861 (2009)

    Article  CAS  Google Scholar 

  35. G. Liu, J. Zhang, G. Xi, R. Zuo, S. Liu, Designing Mg alloys with high ductility: reducing the strength discrepancies between soft deformation modes and hard deformation modes. Acta Mater. 141, 1 (2017)

    Article  Google Scholar 

  36. Z.S. Basinski, M.S. Szczerba, M. Niewczas, J.D. Embury, S.J. Basinski, The transformation of slipdislocations during twinning ofcopper-aluminum alloy crystals. Rev. Metall. Paris 94(9), 1037 (1997)

    Article  CAS  Google Scholar 

  37. F. Wang, C.D. Barrett, R.J. McCabe, H. El Kadiri, L. Capolungo, S.R. Agnew, Dislocation induced twin growth and formation of basal stacking faults in 10 1¯ 2 twins in pure Mg. Acta Mater. 165, 471 (2019)

    Article  CAS  Google Scholar 

  38. D. Hou, T. Liu, H. Chen, D. Shi, C. Ran, F. Pan, Analysis of the microstructure and deformation mechanisms by compression along normal direction in a rolled AZ31 magnesium alloy. Mater. Sci. Eng. A 660, 102 (2016)

    Article  CAS  Google Scholar 

  39. W.B. Hutchinson, M.R. Barnett, Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other hcp metals. Scr. Mater. 63(7), 737 (2010)

    Article  CAS  Google Scholar 

  40. G. Nayyeri, W.J. Poole, C.W. Sinclair, S. Zaefferer, Measurement of the critical resolved shear stress for basal slip in magnesium alloys using instrumented indentation. Scr. Mater. 156, 37 (2018)

    Article  CAS  Google Scholar 

  41. S.R. Agnew, Ö. Duygulu, Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. Int. J. Plast 21(6), 1161 (2005)

    Article  CAS  Google Scholar 

  42. M.R. Barnett, Twinning and the ductility of magnesium alloys. Mater. Sci. Eng. A 464(1–2), 1 (2007)

    Article  Google Scholar 

  43. P. Chen, F. Wang, J. Ombogo, B. Li, Formation of 60° 〈 01 1 ̅ 0 〉 boundaries between 10 1 ̅ 2 twin variants in deformation of a magnesium alloy. Mater. Sci. Eng. A 739, 173 (2019)

    Article  CAS  Google Scholar 

  44. P. Dobroň, F. Chmelík, S. Yi, K. Parfenenko, D. Letzig, J. Bohlen, Grain size effects on deformation twinning in an extruded magnesium alloy tested in compression. Scr. Mater. 65(5), 424 (2011)

    Article  Google Scholar 

  45. C.M. Cepeda-Jiménez, J.M. Molina-Aldareguia, M.T. Pérez-Prado, Origin of the twinning to slip transition with grain size refinement, with decreasing strain rate and with increasing temperature in magnesium. Acta Mater. 88, 232 (2015)

    Article  Google Scholar 

  46. S. Godet, L. Jiang, A. Luo, J. Jonas, Use of Schmid factors to select extension twin variants in extruded magnesium alloy tubes. Scr. Mater. 55(11), 1055 (2006)

    Article  CAS  Google Scholar 

  47. S. H. Park, J. H. Lee, Y.-H. Huh, S.-G. Hong, Enhancing the effect of texture control using {1 0 –1 2} twins by retarding detwinning activity in rolled Mg–3Al–1Zn alloy. Scr. Mater. 4 (2013).

  48. Q. Yu, J. Wang, Y. Jiang, R.J. McCabe, N. Li, C.N. Tomé, Twin–twin interactions in magnesium. Acta Mater. 77, 28 (2014)

    Article  CAS  Google Scholar 

  49. F. Mokdad, D.L. Chen, D.Y. Li, Single and double twin nucleation, growth, and interaction in an extruded magnesium alloy. Mater. Des. 119, 376 (2017)

    Article  CAS  Google Scholar 

  50. R. Xin, M. Wang, X. Huang, C. Guo, Q. Liu, Observation and Schmid factor analysis of multiple twins in a warm-rolled Mg–3Al–1Zn alloy. Mater. Sci. Eng. A 596, 41 (2014)

    Article  CAS  Google Scholar 

  51. B. Clausen, C.N. Tomé, D.W. Brown, S.R. Agnew, Reorientation and stress relaxation due to twinning: modeling and experimental characterization for Mg. Acta Mater. 56(11), 2456 (2008)

    Article  CAS  Google Scholar 

  52. N.C. Ferreri, Z. Feng, D.J. Savage, D.W. Brown, B. Clausen, T.A. Sisneros, M. Knezevic, In-situ high-energy X-ray diffraction and crystal plasticity modeling to predict the evolution of texture, twinning, lattice strains and strength during loading and reloading of beryllium. Int. J. Plast. 150, 103217 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Office of China Postdoctoral Council under Award No. YJ20200248, the Beijing Municipal Natural Science Foundation (No. 2214072), and the Interdisciplinary Research Project for Young Teachers of USTB (Fundamental Research Funds for the Central Universities) (FRF-IDRY-20-034).

Funding

Funding was provided by Office of China Postdoctoral Council (YJ20200248), Beijing Municipal Natural Science Foundation (No. 2214072), Interdisciplinary Research Project for Young Teachers of USTB (FRF-IDRY-20-034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zidong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationship that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Chen, X., Chen, K. et al. Quasi in situ observation of twinning evolution during strain path change in magnesium alloy. Journal of Materials Research 37, 1125–1132 (2022). https://doi.org/10.1557/s43578-022-00507-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00507-3

Keywords

Navigation