Skip to main content

Advertisement

Log in

Study on dynamic properties of metal entangled structure/silicone rubber interpenetrating composite

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Microporous metal entangled structure (MES) can reduce various hazards caused by vibration due to its good damping energy dissipation. However, its bearing capacity is weak and cannot realize the multi-functional characteristics of high damping and high stiffness. In this work, a kind of interpenetrating metal entangled structure/silicone rubber composite (MES-SRC) is developed, which is composed of MES as the skeleton and the silicone rubber as the matrix. The dynamic mechanical tests of MES-SRC, MES, and silicone rubber are conducted, and their dynamic properties, including bearing capacity, damping energy dissipation, and damping, are quantitatively characterized. The test results show that the bearing capacity and damping energy dissipation of MES-SRC are higher. Through the analysis of the mesostructure of MES-SRC, the damping energy dissipation mechanism of MS-SRC is studied. The effects of vibration conditions and process parameters of MES on dynamic properties of MES-SRC are studied, and the reasons for the effects are explained from the mesostructure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Y. Zhengfeng, Y. Dale, Z. Nong et al., Overview of vibration problems and solutions of automotive power transmission system. J. Hefei Univ. Technol. (Natural Science) 44(03), 289–298 (2021)

    Google Scholar 

  2. X.A. Vasanth, P.S. Paul, G. Lawrance et al., Vibration control techniques during turning process: a review. Aust. J. Mech. Eng. 19(2), 221–241 (2021)

    Article  Google Scholar 

  3. P. Gao, T. Yu, Y. Zhang et al., Vibration analysis and control technologies of hydraulic pipeline system in aircraft: a review. Chin. J. Aeronaut. 34(04), 83–114 (2021)

    Article  Google Scholar 

  4. B. Wang, P.X. Gao, H. Ma et al., A review on dynamic characteristics of aero-engine pipeline system. Acta Aeronaut. (in Chinese) 40, 1–25 (2021). https://doi.org/10.7527/S1000-6893.2021.25332

    Article  CAS  Google Scholar 

  5. A.H.R. Talebi, S.A.S. Roknizadeh, A. Reza et al., Magneto-electro-mechanical vibration of porous functionally graded smart sandwich plates with viscoelastic core. Proc. Inst. Mech. Eng. L 235(3), 653–670 (2021)

    Google Scholar 

  6. O. Ranaei, A.A. Aghakouchak, Experimental and numerical study on developed elastomeric layers based on natural and butyl matrix rubbers for viscoelastic dampers. Mech. Time Depend. Mater. (2021). https://doi.org/10.1007/s11043-021-09484-2

    Article  Google Scholar 

  7. W. Liu, N. Li, Z. Zhong et al., Novel cast-aged MnCuNiFeZnAl alloy with good damping capacity and high usage temperature toward engineering application. Mater. Des. 106, 45–50 (2016)

    Article  CAS  Google Scholar 

  8. Y.K. Wu, J.W. Xu, X.C. Wang et al., The effect of damping components on the interfacial dynamics and tribological behavior of high-speed train brakes. Appl. Acoust. 178, 107962 (2021)

    Article  Google Scholar 

  9. X. Zhang, R. Wang, X. Li et al., Energy absorption performance of open-cell aluminum foam and its application in landing buffer system. J. Mater. Eng. Perform. (2021). https://doi.org/10.1007/s11665-021-05823-z

    Article  Google Scholar 

  10. P. Albertelli, S. Esposito, V. Mussi et al., Effect of metal foam on vibration damping and its modelling. Int. J. Adv. Manuf. Technol. (2021). https://doi.org/10.1007/s00170-021-07172-6

    Article  Google Scholar 

  11. Z. Xu, C.S. Ha, R. Kadam et al., Additive manufacturing of two-phase lightweight, stiff and high damping carbon fiber reinforced polymer microlattices. Add. Manuf. 32, 101106 (2020)

    CAS  Google Scholar 

  12. T. Wang, Study on Integration Design of Structural Damping of Structural Damping of Carbon Fiber Reinforced Epoxy Matrix Composites (Shandong University, Jinan, 2019)

    Google Scholar 

  13. A. Raju, M. Shanmugaraja, Recent researches in fiber reinforced composite materials: a review. Mater. Today 46, 9291–9296 (2021)

    CAS  Google Scholar 

  14. D.Y. Zhang, Y. Xia, Q.C. Zhang et al., Researches on metal rubber mechanics properties in retrospect and prospect. J. Aerosp. Power 33(06), 1432–1445 (2018)

    Google Scholar 

  15. Z. Ren, L. Shen, H. Bai et al., Study on the mechanical properties of metal rubber with complex contact friction of spiral coils based on virtual manufacturing technology. Adv. Eng. Mater. 22(8), 2000382 (2020)

    Article  CAS  Google Scholar 

  16. Y. Ma, Q. Zhang, D. Zhang et al., Tuning the vibration of a rotor with shape memory alloy metal rubber supports. J. Sound Vib. 351, 1–16 (2015)

    Article  Google Scholar 

  17. X. Cao, C. Wei, J. Liang et al., Design and dynamic analysis of metal rubber isolators between satellite and carrier rocket system. Mech. Sci. 10(1), 71–78 (2019)

    Article  Google Scholar 

  18. H. Fu, Z. Hua, L. Zou et al., Combined stiffness characteristic of metal rubber material under vibration loads. Proc. Inst. Mech. Eng. C 233(17), 6076–6088 (2019)

    Article  Google Scholar 

  19. L. Chengzhuang, L. Jingyuan, Z. Bangyang, An experimental study on stiffness characteristics and damping of metal rubber. J. Vib. Shock 36(8), 203–208 (2017)

    Google Scholar 

  20. J.P. dos Santos Lopes, Effects of Design Parameters on Damping of Composite Materials for Aeronautical Applications (Universidade da Beira Interior (Portugal), Covilhã, 2013)

    Google Scholar 

  21. A. Lu, L. Zhao, Y. Liu et al., Enhanced damping capacity in graphene-Al nanolaminated composite pillars under compression cyclic loading. Metall. Mater. Trans. A 51(4), 1463–1468 (2020)

    Article  CAS  Google Scholar 

  22. P.R. Matli, V. Manakari, G. Parande et al., Improving mechanical, thermal and damping properties of NiTi (nitinol) reinforced aluminum nanocomposites. J. Compos. Sci. 4(1), 19 (2020)

    Article  CAS  Google Scholar 

  23. C. Zheng, F. Duan, S. Liang, Manufacturing and mechanical performance of novel epoxy resin matrix carbon fiber reinforced damping composites. Compos. Struct. 256, 113099 (2021)

    Article  CAS  Google Scholar 

  24. M.D. Kumar, C. Senthamaraikannan, S. Jayasrinivasan et al., Study on static and dynamic behavior of jute/sisal fiber reinforced epoxy composites. Mater. Today 46, 9425–9428 (2021)

    Google Scholar 

  25. Y. Li, H. Li, C. Jin, Effect of multi-walled carbon nanotubes on the damping property of cement mortar and mechanism analysis. Arch. Civ. Mech. Eng. 21(3), 1–14 (2021)

    Article  Google Scholar 

  26. W. Yu, X. Li, M. Vallet et al., High temperature damping behavior and dynamic Young’s modulus of magnesium matrix composite reinforced by Ti2AlC MAX phase particles. Mech. Mater. 129, 246–253 (2019)

    Article  Google Scholar 

  27. Y. Li, S. Cai, X. Huang, Multi-scaled enhancement of damping property for carbon fiber reinforced composites. Compos. Sci. Technol. 143, 89–97 (2017)

    Article  CAS  Google Scholar 

  28. M. Rafiee, F. Nitzsche, M.R. Labrosse, Fabrication and experimental evaluation of vibration and damping in multiscale graphene/fiberglass/epoxy composites. J. Compos. Mater. 53(15), 2105–2118 (2019)

    Article  CAS  Google Scholar 

  29. M. Akhtar, A. Khajuria, Probing true microstructure-hardening relationship in simulated heat affected zone of P91B steels. Metallogr. Microstruct. Anal. 8(5), 656–677 (2019)

    Article  CAS  Google Scholar 

  30. M. Akhtar, A. Khajuria, J.K. Sahu et al., Phase transformations and numerical modelling in simulated HAZ of nanostructured P91B steel for high temperature applications. Appl. Nanosci. 8(7), 1669–1685 (2018)

    Article  CAS  Google Scholar 

  31. Y. Wang, Z. Zhang, X. Xue et al., Experimental investigation on enhanced mechanical and damping performance of corrugated structure with metal rubber. Thin-Walled Struct. 154, 106816 (2020)

    Article  Google Scholar 

  32. X. Zheng, Z. Ren, L. Shen et al., Dynamic performance of laminated high-damping and high-stiffness composite structure composed of metal rubber and silicone rubber. Materials 14(1), 187 (2021)

    Article  CAS  Google Scholar 

  33. F.A. Sabet, F.Y. Su, J. McKittrick et al., Mechanical properties of model two-phase composites with continuous compared to discontinuous phases. Adv. Eng. Mater. 20(10), 1800505 (2018)

    Article  Google Scholar 

  34. W. Yu, H. Li, Z. Zhao et al., Compressive mechanical properties of foam aluminum-epoxy interpenetrating phase composites. Fuhe Cailiao Xuebao 29(4), 224–230 (2012)

    CAS  Google Scholar 

  35. S. Liu, A. Li, Hysteretic friction behavior of aluminum foam/polyurethane interpenetrating phase composites. Compos. Struct. 203, 18–29 (2018)

    Article  Google Scholar 

  36. S. Liu, A. Li, P. Xuan, Mechanical behavior of aluminum foam/polyurethane interpenetrating phase composites under monotonic and cyclic compression. Compos. A 116, 87–97 (2019)

    Article  CAS  Google Scholar 

  37. Z. Jiang, F. Wang, J. Yin et al., Vibration damping mechanism of CuAlMn/polymer/carbon nanomaterials multi-scale composites. Compos. B 199, 108266 (2020)

    Article  CAS  Google Scholar 

  38. X. Wang, Y. Zhou, J. Li et al., Uniaxial compression mechanical properties of foam nickel/iron-epoxy interpenetrating phase composites. Materials 14(13), 3523 (2021)

    Article  CAS  Google Scholar 

  39. V.M. Kulik, A.V. Boiko, S.P. Bardakhanov et al., Viscoelastic properties of silicone rubber with admixture of SiO2 nanoparticles. Mater. Sci. Eng. A 528(18), 5729–5732 (2011)

    Article  CAS  Google Scholar 

  40. E. Cho, L.L.Y. Chiu, M. Lee et al., Characterization of mechanical and dielectric properties of silicone rubber. Polymers 13(11), 1831 (2021)

    Article  CAS  Google Scholar 

  41. Y.J. Cai, C.C. Zhang, L.L. Wu et al., Mechanical damping properties of silicone rubber prepared by nano-SiO2 and AGE-modified polysiloxane blends. Adv. Mater. Res. 337, 41–45 (2011)

    Article  CAS  Google Scholar 

  42. S. Qi, M. Yu, J. Fu et al., An EPDM/MVQ polymer blend based magnetorheological elastomer with good thermostability and mechanical performance. Soft Matter 14(42), 8521–8528 (2018)

    Article  CAS  Google Scholar 

  43. A. Zolriasatein, S. Navazani, M.R. Abadchi et al., Two-component room temperature vulcanized silicone-rubber (RTV2) properties modification: effect of aluminum three hydrate and nanosilica additions on the microstructure, electrical, and mechanical properties. J. Mater. Sci.: Mater. Electron. 32(7), 8903–8915 (2021)

    CAS  Google Scholar 

  44. X. Xue, P. Yang, Y. Shao et al., Manufacture technology and anisotropic behaviour of elastic-porous metal rubber. Int. J. Lightweight Mater. Manuf. 3(2), 88–99 (2020)

    Google Scholar 

  45. J. Beter, B. Schrittesser, B. Maroh et al., Comparison and impact of different fiber debond techniques on fiber reinforced flexible composites. Polymers 12(2), 472 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank National Natural Science Foundation of China (Grant No. 52175162, 51805086 and 51975123), Natural Science Foundation of Fujian Province (Grant No. 2019J01210), and Health education joint project of Fujian Province (Grant No. 2019-WJ-01).

Author information

Authors and Affiliations

Authors

Contributions

ZR contributed to formal analysis, visualization, and writing—review & editing. CL contributed to investigation, conceptualization, and tests. XZ and TZ contributed to data curation. HB contributed to resources.

Corresponding author

Correspondence to Zhiying Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Z., Li, C., Zheng, X. et al. Study on dynamic properties of metal entangled structure/silicone rubber interpenetrating composite. Journal of Materials Research 37, 1102–1114 (2022). https://doi.org/10.1557/s43578-022-00500-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00500-w

Keywords

Navigation