Skip to main content
Log in

Monodisperse MnO nanoparticles in situ grown on reduced graphene oxide via hydrophobic interaction for excellent electromagnetic wave absorption

  • Article
  • FOCUS ISSUE: Transition Metal-based Nanomaterials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

It is significant to fabricate the oxide nanoparticle/graphene composite for improving the electromagnetic wave absorption properties. In this work, the monodisperse manganese oxide (MnO) nanoparticle/reduced graphene oxide (rGO) composite was obtained via the hydrophobic interaction in the colloidal solution. The monodisperse MnO nanoparticle is about 55 nm with a uniform distribution due to the modification of oleylamine. When it was used for the electromagnetic (EM) wave absorption, an excellent EM wave absorption in the 2–18 GHz band was displayed. Its effective EM absorption bandwidth can be up to 4.2 GHz at 1.5 mm thickness, and the minimum reflection loss can be up to − 44.67 dB at 2 mm thickness. This is because the monodisperse MnO nanoparticles with the uniform distribution could provide more interfacial polarization active sites, which enhanced the interfacial polarization effect. This uniform hybrid is expected to be a potential candidate for the outstanding EM wave absorption performance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request

References

  1. A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto, M. Goto, S. Sasaki, S.-I. Ohkoshi, Synthesis of an electromagnetic wave absorber for high-speed wireless communication. J. Am. Chem. Soc. 131, 1170–1173 (2009)

    Article  CAS  Google Scholar 

  2. Y. Zhang, Y. Huang, T.F. Zhang, H.C. Chang, P.S. Xiao, H.H. Chen, Z.Y. Huang, Y.S. Chen, Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049–2053 (2015)

    Article  CAS  Google Scholar 

  3. A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009)

    Article  CAS  Google Scholar 

  4. M. Fu, Q.Z. Jiao, Y. Zhao, Preparation of NiFe2O4 nanorod-graphene composites via an ionic liquid assisted one-step hydrothermal approach and their microwave absorbing properties. J. Mater. Chem. A 1, 5577–5586 (2013)

    Article  CAS  Google Scholar 

  5. B. Wen, M.S. Cao, M.M. Lu, W.Q. Cao, H.L. Shi, J. Liu, X.X. Wang, H.B. Jin, X.Y. Fang, W.Z. Wang, J. Yuan, Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014)

    Article  CAS  Google Scholar 

  6. W. Yan, F. He, S.L. Gai, P. Gao, Y.J. Chen, P.P. Yang, A novel 3D structured reduced graphene oxide/TiO2 composite: synthesis and photocatalytic performance. J. Mater. Chem. A 2, 3605–3612 (2014)

    Article  CAS  Google Scholar 

  7. L.N. Liu, F. Yan, K.Y. Li, C.L. Zhu, Y. Xie, X.T. Zhang, Y.J. Chen, Ultrasmall FeNi3N particles with an exposed active (110) surface anchored on nitrogen-doped graphene for multifunctional electrocatalysts. J. Mater. Chem. A 7, 1083–1091 (2019)

    Article  CAS  Google Scholar 

  8. Y.J. Chen, Z.Y. Lei, H.Y. Wu, C.L. Zhu, P. Gao, Q.Y. Ouyang, L.H. Qi, W. Qin, Electromagnetic absorption properties of graphene/Fe nanocomposites. Mater. Res. Bull. 48, 3362–3366 (2013)

    Article  CAS  Google Scholar 

  9. B. Qu, C.L. Zhu, C.Y. Li, X.T. Zhang, Y.J. Chen, Coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 8, 3730–3735 (2016)

    Article  CAS  Google Scholar 

  10. X. Zhang, J. Xu, H. Yuan, S. Zhang, Q. Ouyang, C. Zhu, X. Zhang, Y. Chen, Large-scale synthesis of three-dimensional reduced graphene oxide/nitrogen-doped carbon nanotube heteronanostructures as highly efficient electromagnetic wave absorbing materials. ACS Appl. Mater. Interfaces 11, 39100–39108 (2019)

    Article  CAS  Google Scholar 

  11. H. Zhang, M. Hong, P. Chen, A.J. Xie, Y.H. Shen, 3D and ternary rGO/MCNTs/Fe3O4 composite hydrogels: synthesis, characterization and their electromagnetic wave absorption properties. J. Alloys Compd. 665, 381–387 (2016)

    Article  CAS  Google Scholar 

  12. F.B. Meng, H.G. Wang, F. Huang, Y.F. Guo, Z.Y. Wang, D. Hui, Z.W. Zhou, Graphene-based microwave absorbing composites: a review and prospective. Compos. Part B-Eng. 137, 260–277 (2018)

    Article  CAS  Google Scholar 

  13. K.C. Zhang, X.B. Gao, Q. Zhang, T.P. Li, H. Chen, X.F. Chen, Preparation and microwave absorption properties of asphalt carbon coated reduced graphene oxide/magnetic CoFe2O4 hollow particles modified multi-wall carbon nanotube composites. J. Alloys Compd. 723, 912–921 (2017)

    Article  CAS  Google Scholar 

  14. F. Yan, S. Zhang, X. Zhang, C.Y. Li, C.L. Zhu, X.T. Zhang, Y.J. Chen, Growth of CoFe2O4 hollow nanoparticles on graphene sheets for high-performance electromagnetic wave absorbers. J. Mater. Chem. C. 6, 12781–12787 (2018)

    Article  CAS  Google Scholar 

  15. C.L. Zhu, S. Zhang, Y. Sun, Y.J. Chen, Incorporation of CoO@Co yolk-shell nanoparticles and ZnO nanoparticles with graphene sheets as lightweight and high-performance electromagnetic wave absorbing material. J. Alloys Compd. 711, 552–559 (2017)

    Article  CAS  Google Scholar 

  16. L. Wang, H.L. Xing, S.T. Gao, X.L. Ji, Z.Y. Shen, Porous flower-like NiO@graphene composites with superior microwave absorption properties. J. Mater. Chem. C 5, 2005–2014 (2017)

    Article  CAS  Google Scholar 

  17. X. Jian, B. Wu, Y. Wei, S.X. Dou, X. Wang, W. He, N. Mahmood, Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 8, 6101–6109 (2016)

    Article  CAS  Google Scholar 

  18. T.K. Gupta, B.P. Singh, V.N. Singh, S. Teotia, A.P. Singh, I. Elizabeth, S.R. Dhakate, S.K. Dhawan, R.B. Mathur, MnO2 decorated graphene nanoribbons with superior permittivity and excellent microwave shielding properties. J. Mater. Chem. A 2, 4256–4263 (2014)

    Article  CAS  Google Scholar 

  19. Y. Wang, H.T. Guan, C.J. Dong, X.C. Xiao, S.F. Du, Y.D. Wang, Reduced graphene oxide (RGO)/Mn3O4 nanocomposites for dielectric loss properties and electromagnetic interference shielding effectiveness at high frequency. Ceram. Int. 42, 936–942 (2016)

    Article  CAS  Google Scholar 

  20. J.T. Yuan, K.Z. Li, Z.F. Liu, S.W. Jin, S.K. Li, H. Zhang, Preparation of reduced graphene oxide/MnO composite and its electromagnetic wave absorption performance. Russ. J. Phys. Chem. A 92, 342–345 (2018)

    Article  CAS  Google Scholar 

  21. N. Bao, L. Shen, Y. Wang, P. Padhan, A. Gupta, A facile thermolysis route to monodisperse ferrite nanocrystals. J. Am. Chem. Soc. 129, 12374–12375 (2007)

    Article  CAS  Google Scholar 

  22. J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang, T. Hyeon, Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891–895 (2004)

    Article  CAS  Google Scholar 

  23. T. Li, B. Xue, B. Wang, G. Guo, D. Han, Y. Yan, A. Dong, Tubular monolayer superlattices of hollow Mn3O4 nanocrystals and their oxygen reduction activity. J. Am. Chem. Soc. 139, 12133–12136 (2017)

    Article  CAS  Google Scholar 

  24. Y. Xiao, X. Wang, W. Wang, D. Zhao, M. Cao, Engineering hybrid between MnO and N-doped carbon to achieve exceptionally high capacity for lithium-ion battery anode. ACS Appl. Mater. Interfaces 6, 2051–2058 (2014)

    Article  CAS  Google Scholar 

  25. G.B. Xu, F. Jiang, Z.A. Ren, L.W. Yang, Polyhedral MnO nanocrystals anchored on reduced graphene oxide as an anode material with superior lithium storage capability. Ceram. Int. 41, 10680–10688 (2015)

    Article  CAS  Google Scholar 

  26. J. Yu, J.-D. Luo, H. Zhang, Z. Zhang, J. Wei, Z. Yang, Renewable agaric-based hierarchically porous cocoon-like MnO/carbon composites enable high-energy and high-rate Li-ion batteries. Electrochim. Acta 322, 134757 (2019)

    Article  CAS  Google Scholar 

  27. P. Miles, W. Westphal, A. Von Hippel, Dielectric spectroscopy of ferromagnetic semiconductors. Rev. Mod. Phys. 29, 279–307 (1957)

    Article  CAS  Google Scholar 

  28. J.T. Yuan, Q.C. Liu, S.K. Li, Y. Lu, S.W. Jin, K.Z. Li, H. Chen, H. Zhang, Metal organic framework (MOF)-derived carbonaceous Co3O4/Co microframes anchored on RGO with enhanced electromagnetic wave absorption performances. Synth. Met. 228, 32–40 (2017)

    Article  CAS  Google Scholar 

  29. X.H. Li, J. Feng, Y.P. Du, J.T. Bai, H.M. Fan, H.L. Zhang, Y. Peng, F.S. Li, One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J. Mater. Chem. A 3, 5535–5546 (2015)

    Article  CAS  Google Scholar 

  30. X.L. Zheng, J. Feng, Y. Zong, H. Miao, X.Y. Hu, J.T. Bai, X.H. Li, Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanocrystals as synergistic electromagnetic wave absorbers. J. Mater. Chem. C 3, 4452–4463 (2015)

    Article  CAS  Google Scholar 

  31. H.R. Yuan, X. Zhang, F. Yan, S. Zhang, C.L. Zhu, C.Y. Li, X.T. Zhang, Y.J. Chen, Nitrogen-doped carbon nanosheets containing Fe3C nanoparticles encapsulated in nitrogen-doped graphene shells for high-performance electromagnetic wave absorbing materials. Carbon 140, 368–376 (2018)

    Article  CAS  Google Scholar 

  32. X. Xu, F. Ran, H. Lai, Z. Cheng, T. Lv, L. Shao, Y. Liu, In Situ confined bimetallic metal-organic framework derived nanostructure within 3D interconnected bamboo-like carbon nanotube networks for boosting electromagnetic wave absorbing performances. ACS Appl. Mater. Interfaces. 11, 35999–36009 (2019)

    Article  CAS  Google Scholar 

  33. J.Y. Fu, W. Yang, L.Q. Hou, Z. Chen, T. Qu, H.T. Yang, Y.F. Li, Enhanced electromagnetic microwave absorption performance of lightweight bowl-like carbon nanoparticles. Ind. Eng. Chem. Res 56, 11460–11466 (2017)

    Article  CAS  Google Scholar 

  34. H. Chen, Z. Huang, Y. Huang, Y. Zhang, Z. Ge, B. Qin, Z. Liu, Q. Shi, P. Xiao, Y. Yang, T. Zhang, Y. Chen, Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands. Carbon 124, 506–514 (2017)

    Article  CAS  Google Scholar 

  35. H.R. Yuan, F. Yan, C.Y. Li, C.L. Zhu, X.T. Zhang, Y.J. Chen, Nickel nanoparticle encapsulated in few-layer nitrogen-doped graphene supported by nitrogen-doped graphite sheets as a high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 10, 1399–1407 (2018)

    Article  CAS  Google Scholar 

  36. J.-Z. He, X.-X. Wang, Y.-L. Zhang, M.-S. Cao, Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity. J. Mater. Chem. C 4, 7130–7140 (2016)

    Article  CAS  Google Scholar 

  37. M.K. Han, X.W. Yin, L. Kong, M. Li, W.Y. Duan, L.T. Zhang, L.F. Cheng, Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. A 2, 16403–16409 (2014)

    Article  CAS  Google Scholar 

  38. Y. Liu, C. Ji, X.L. Su, J. Xu, X.H. He, Electromagnetic and microwave absorption properties of Ti3SiC2 powders decorated with Ag particles. J. Alloys Compd. 820, 153154–153161 (2020)

    Article  CAS  Google Scholar 

  39. W.S. Hummers Jr., R.E.J.J.O.T.A.C.S. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958)

    Article  CAS  Google Scholar 

  40. P. Feicht, J. Biskupek, T.E. Gorelik, J. Renner, C.E. Halbig, M. Maranska, F. Puchtler, U. Kaiser, S. Eigler, Brodie’s or hummers’ method: oxidation conditions determine the structure of graphene oxide. Chem.-Eur. J. 25, 8955–8959 (2019)

    Article  CAS  Google Scholar 

  41. Y.M. Hunge, A.A. Yadav, A.G. Dhodamani, N. Suzuki, C. Terashima, A. Fujishima, Enhanced photocatalytic performance of ultrasound treated GO/TiO2 composite for photocatalytic degradation of salicylic acid under sunlight illumination. Ultrason. Sonochem. 61, 104849–10854 (2020)

    Article  CAS  Google Scholar 

  42. V.M. Boychuk, V.O. Kotsyubynsky, K.V. Bandura, I.P. Yaremiy, S.V. Fedorchenko, Reduced graphene oxide obtained by hummers and marcano-tour methods: comparison of electrical properties. J. Nanosci. Nanotechnol. 19, 7320–7329 (2019)

    Article  CAS  Google Scholar 

  43. L.J. Cote, F. Kim, J.X. Huang, Langmuir-blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 131, 1043–1049 (2009)

    Article  CAS  Google Scholar 

  44. M.J. Fernandez-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, J.M.D. Tascon, Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C. 114, 6426–6432 (2010)

    Article  CAS  Google Scholar 

  45. I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Reduced graphene oxide by chemical graphitization. Nat. Commun. 1, 73–78 (2010)

    Article  CAS  Google Scholar 

  46. D. Han, G. Guo, Y. Yan, T. Li, B. Wang, A. Dong, Pomegranate-like: carbon-coated Fe3O4 nanoparticle superparticles for high-performance lithium storage. Energy Storage Mater. 10, 32–39 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the National Natural Science Foundation of China (21473051), the Natural Science Foundation of Heilongjiang Province (LH2019B014), and Youth Science and Technology Innovation Team Project of Heilongjiang Province (2018-KYYWF-1593).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihong Qi or Kai Pan.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Liu, J., Xie, Y. et al. Monodisperse MnO nanoparticles in situ grown on reduced graphene oxide via hydrophobic interaction for excellent electromagnetic wave absorption. Journal of Materials Research 37, 2175–2184 (2022). https://doi.org/10.1557/s43578-022-00491-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00491-8

Navigation