Skip to main content
Log in

Crystallization kinetics and thermodynamics of an Ag–In–Sb–Te phase change material using complementary in situ microscopic techniques

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The crystallization of an amorphous Ag–In–Sb–Te (AIST) phase change material (PCM) is studied using multiple in situ imaging techniques to directly quantify crystal growth rates over a broad range of temperatures. The measurable growth rates span from ≈ 10–9 to ≈ 20 m/s. Recent results using dynamic transmission electron microscopy (TEM), a photoemission TEM technique, and TEM with sub-framed imaging are reported here and placed into the context of previous growth rate measurements on AIST. Dynamic TEM experiments show a maximum observed crystal growth rate for as-deposited films to be > 20 m/s. It is shown that crystal growth above the glass transition can be imaged in a TEM through use of subframing and a high-frame-rate direct electron detection camera. Challenges associated with the determination of temperature during in situ TEM experiments are described. Preliminary nanocalorimetry results demonstrate the feasibility of collecting thermodynamic data for crystallization of PCMs with simultaneous TEM imaging.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S.R. Ovshinsky, Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21(20), 1450 (1968)

    Article  Google Scholar 

  2. M. Chen, K.A. Rubin, R.W. Barton, Compound materials for reversible, phase-change optical-data storage. Appl. Phys. Lett. 49(9), 502 (1986)

    Article  CAS  Google Scholar 

  3. Y.V. Pershin, M. Di Ventra, Memory effects in complex materials and nanoscale systems. Adv. Phys. 60(2), 145 (2011)

    Article  Google Scholar 

  4. W. Zhang, R. Mazzarello, M. Wuttig, E. Ma, Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater. 4(3), 150 (2019)

    Article  CAS  Google Scholar 

  5. Y.B. Li, Z.R. Wang, R. Midya, Q.F. Xia, J.J. Yang, Review of memristor devices in neuromorphic computing: materials sciences and device challenges. J. Phys. D-Appl. Phys. 51(50), 503002 (2018)

    Article  CAS  Google Scholar 

  6. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin-films for an optical disk memory. J. Appl. Phys. 69(5), 2849 (1991)

    Article  CAS  Google Scholar 

  7. V. Weidenhof, N. Pirch, I. Friedrich, S. Ziegler, M. Wuttig, Minimum time for laser induced amorphization of Ge2Sb2Te5 films. J. Appl. Phys. 88(2), 657 (2000)

    Article  CAS  Google Scholar 

  8. S.R. Elliott, Chalcogenide phase-change materials: past and future. Int. J. Appl. Glas. Sci. 6(1), 15 (2015)

    Article  CAS  Google Scholar 

  9. J. Orava, A.L. Greer, Fast crystal growth in glass-forming liquids. J. Non-Cryst. Solids 451, 94 (2016)

    Article  CAS  Google Scholar 

  10. M.M. Winseck, H.-Y. Cheng, G.H. Campbell, M.K. Santala, Crystallization kinetics of the phase change material GeSb6Te measured with dynamic transmission electron microscopy. Dalton Trans. 45, 9988 (2016)

    Article  CAS  Google Scholar 

  11. J. Orava, A.L. Greer, D.W. Hewak, C.E. Smith, Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. Nat. Mater. 11, 279 (2012)

    Article  CAS  Google Scholar 

  12. J. Orava, D.W. Hewak, A.L. Greer, Fragile-to-strong crossover in supercooled liquid Ag-In-Sb-Te studied by ultrafast calorimetry. Adv. Funct. Mater. 25(30), 4851 (2015)

    Article  CAS  Google Scholar 

  13. J. Orava, A.L. Greer, Kissinger method applied to the crystallization of glass-forming liquids: regimes revealed by ultra-fast-heating calorimetry. Thermochim. Acta 603, 63 (2015)

    Article  CAS  Google Scholar 

  14. B. Chen, J. Momand, P.A. Vermeulen, B.J. Kooi, Crystallization kinetics of supercooled liquid Ge-Sb based on ultrafast calorimetry. Cryst. Growth Des. 16(1), 242 (2016)

    Article  CAS  Google Scholar 

  15. M. Salinga, E. Carria, A. Kaldenbach, M. Bornhoefft, J. Benke, J. Mayer, M. Wuttig, Measurement of crystal growth velocity in a melt-quenched phase-change material. Nat. Commun. 4, 1 (2013)

    Article  Google Scholar 

  16. J. Kalb, F. Spaepen, M. Wuttig, Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys. Appl. Phys. Lett. 84(25), 5240 (2004)

    Article  CAS  Google Scholar 

  17. V.L. Bird: Crystallization rates of AIST and Ge thin films by optical and electron microscopy, M.S. thesis, Materials Science (Oregon State University, Corvallis, 2019).

  18. G. Eising, T. Van Damme, B.J. Kooi, Unraveling crystal growth in GeSb phase-change films in between the glass-transition and melting temperatures. Cryst. Growth Des. 14(7), 3392 (2014)

    Article  CAS  Google Scholar 

  19. M.K. Santala, B.W. Reed, S. Raoux, T. Topuria, T. LaGrange, G.H. Campbell, Capturing irreversible reactions with nanosecond-scale dynamic TEM movies: measuring crystal growth rates during laser annealing of phase change materials. Microsc. Microanal. 19(S2), 1156 (2013)

    Article  Google Scholar 

  20. B.W. Reed, A.A. Moghadam, R.S. Bloom, S.T. Park, A.M. Monterrosa, P.M. Price, C.M. Barr, S.A. Briggs, K. Hattar, J.T. McKeown, D.J. Masiel, Electrostatic subframing and compressive-sensing video in transmission electron microscopy. Struct. Dyn. 6(5), 54–303 (2019)

    Article  CAS  Google Scholar 

  21. H. Iwasaki, M. Harigaya, O. Nonoyama, Y. Kageyama, M. Takahashi, K. Yamada, H. Deguchi, Y. Ide, Completely erasable phase-change optical disc. 2. Application of Ag-In-Sb-Te mixed-phase system for rewritable compact disc compatible with CD-velocity and double CD-velocity. Jpn. J. Appl. Phys. 32(11B), 5241 (1993)

    Article  CAS  Google Scholar 

  22. H. Tashiro, M. Harigaya, Y. Kageyama, K. Ito, M. Shinotsuka, K. Tani, A. Watada, N. Yiwata, Y. Nakata, S. Emury, Structural analysis of Ag-In-Sb-Te phase-change material. Jpn. J. Appl. Phys. 41(6A), 3758 (2002)

    Article  CAS  Google Scholar 

  23. T. Schroder, T. Rosenthal, C. Gold, E.W. Scheidt, W. Schnick, O. Oeckler, Two synthetic approaches to Ag3.4In3.7Sb76.4Te16.5 bulk samples and their transport properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie 639(15), 2868 (2013)

    Article  CAS  Google Scholar 

  24. T. Matsunaga, N. Yamada, Crystallographic studies on high-speed phase-change materials used for rewritable optical recording disks. Jpn. J. Appl. Phys. 43(7B), 4704 (2004)

    Article  CAS  Google Scholar 

  25. D.J. Sarrach, J.P. DeNeufville, W.L. Haworth, Studies of amorphous Ge-Se-Te alloys (1): preparation and calorimetric observations. J. Non-Cryst. Solids 22(2), 245 (1976)

    Article  CAS  Google Scholar 

  26. J.A. Kalb, M. Wuttig, F. Spaepen, Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording. J. Mater. Res. 22(3), 748 (2007)

    Article  CAS  Google Scholar 

  27. B.-S. Lee, R.M. Shelby, S. Raoux, C.T. Retter, G.W. Burr, S.N. Bogle, K. Darmawikarta, S.G. Bishop, J.R. Abelson, Nanoscale nuclei in phase change materials: origin of different crystallization mechanisms of Ge2Sb2Te5 and AgInSbTe. J. Appl. Phys. 115(6), 063506 (2014)

    Article  CAS  Google Scholar 

  28. B.S. Lee, G.W. Burr, R.M. Shelby, S. Raoux, C.T. Rettner, S.N. Bogle, K. Darmawikarta, S.G. Bishop, J.R. Abelson, Observation of the role of subcritical nuclei in crystallization of a glassy solid. Science 326(5955), 980 (2009)

    Article  CAS  Google Scholar 

  29. Y. Fukuyama, N. Yasuda, J. Kim, H. Murayama, Y. Tanaka, S. Kimura, K. Kato, S. Kohara, Y. Moritomo, T. Matsunaga, R. Kojima, N. Yamada, H. Tanaka, T. Ohshima, M. Takata, Time-resolved investigation of nanosecond crystal growth in rapid-phase-change materials: correlation with the recording speed of digital versatile disc media. Appl. Phys. Express. 1(4), 045001 (2008)

    Article  CAS  Google Scholar 

  30. W.K. Njoroge, M. Wuttig, Crystallization kinetics of sputter-deposited amorphous AgInSbTe films. J. Appl. Phys. 90(8), 3816 (2001)

    Article  CAS  Google Scholar 

  31. W.K. Njoroge, H. Dieker, M. Wuttig, Influence of dielectric capping layers on the crystallization kinetics of Ag5In6Sb59Te30 films. J. Appl. Phys. 96(5), 2624 (2004)

    Article  CAS  Google Scholar 

  32. J. Orava, H. Weber, I. Kaban, A.L. Greer, Viscosity of liquid Ag-In-Sb-Te: evidence of a fragile-to-strong crossover. J. Chem. Phys. 144(19), 194503 (2016)

    Article  CAS  Google Scholar 

  33. K.F. Kelton, A.L. Greer, Transient nucleation effects in glass-formation. J. Non-Cryst. Solids 79(3), 295 (1986)

    Article  CAS  Google Scholar 

  34. S. Senkader, C.D. Wright, Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices. J. Appl. Phys. 95(2), 504 (2004)

    Article  CAS  Google Scholar 

  35. C.A. Angell, Formation of glasses from liquids and biopolymers. Science 267(5206), 1924 (1995)

    Article  CAS  Google Scholar 

  36. M.D. Ediger, P. Harrowell, L. Yu, Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity. J. Chem. Phys. 128(3), 034709 (2008)

    Article  CAS  Google Scholar 

  37. C.A. Angell, Water-II is a strong liquid. J. Phys. Chem. 97(24), 6339 (1993)

    Article  CAS  Google Scholar 

  38. S. Wei, P. Lucas, C.A. Angell, Phase change alloy viscosities down to Tg using Adam-Gibbs-equation fittings to excess entropy data: A fragile-to-strong transition. J. Appl. Phys. 118(3), 34–903 (2015)

    Article  CAS  Google Scholar 

  39. S.L. Lai, G. Ramanath, L.H. Allen, P. Infante, Z. Ma, High-speed (104°C/s) scanning microcalorimetry with monolayer sensitivity (J/m2). Appl. Phys. Lett. 67(9), 1229 (1995)

    Article  CAS  Google Scholar 

  40. M.D. Grapes, T. LaGrange, L.H. Friedman, B.W. Reed, G.H. Campbell, T.P. Weihs, D.A. LaVan, Combining nanocalorimetry and dynamic transmission electron microscopy for in situ characterization of materials processes under rapid heating and cooling. Rev. Sci. Instrum. 85(8), 084902 (2014)

    Article  CAS  Google Scholar 

  41. M.D. Grapes, M.K. Santala, G.H. Campbell, D.A. LaVan, T.P. Weihs, A detailed study of the Al3Ni formation reaction using nanocalorimetry. Thermochim. Acta 658, 72 (2017)

    Article  CAS  Google Scholar 

  42. M.R. Armstrong, K. Boyden, N.D. Browning, G.H. Campbell, J.D. Colvin, W.J. DeHope, A.M. Frank, D.J. Gibson, F. Hartemann, J.S. Kim, W.E. King, T.B. LaGrange, B.J. Pyke, B.W. Reed, R.M. Shuttlesworth, B.C. Stuart, B.R. Torralva, Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy. Ultramicroscopy 107(4–5), 356 (2007)

    Article  CAS  Google Scholar 

  43. T. LaGrange, B.W. Reed, M.K. Santala, J.T. McKeown, A. Kulovits, J.M.K. Wiezorek, L. Nikolova, F. Rosei, B.J. Siwick, G.H. Campbell, Approaches for ultrafast imaging of transient materials processes in the transmission electron microscope. Micron 43(11), 1108 (2012)

    Article  CAS  Google Scholar 

  44. G.H. Campbell, J.T. McKeown, M.K. Santala, Time resolved electron microscopy for in situ experiments. Appl. Phys. Rev. 1(4), 041101 (2014)

    Article  CAS  Google Scholar 

  45. M.K. Santala, B.W. Reed, S. Raoux, T. Topuria, T. LaGrange, G.H. Campbell, Nanosecond-scale time-resolved electron imaging during laser crystallization of GeTe. Phys. Status Solidi B 249(10), 1907 (2012)

    Article  CAS  Google Scholar 

  46. M.K. Santala, B.W. Reed, S. Raoux, T. Topuria, T. LaGrange, G.H. Campbell, Irreversible reactions studied with nanosecond TEM movies: laser crystallization of phase change materials. Appl. Phys. Lett. 102(17), 174–105 (2013)

    Article  CAS  Google Scholar 

  47. M.K. Santala, B.W. Reed, T. Topuria, S. Raoux, S. Meister, Y. Cui, T. LaGrange, G.H. Campbell, N.D. Browning, Nanosecond in situ transmission electron microscope studies of the reversible Ge2Sb2Te5 crystalline ⇔ amorphous phase transformation. J. Appl. Phys. 111(2), 024309 (2012)

    Article  CAS  Google Scholar 

  48. J.C. Mauro, Y.Z. Yue, A.J. Ellison, P.K. Gupta, D.C. Allan, Viscosity of glass-forming liquids. Proc. Natl. Acad. Sci. USA. 106(47), 19780 (2009)

    Article  CAS  Google Scholar 

  49. B.L. Zink, F. Hellman, Specific heat and thermal conductivity of low-stress amorphous Si-N membranes. Solid State Commun. 129(3), 199 (2004)

    Article  CAS  Google Scholar 

  50. F. Yi, L.H. Friedman, R. Chen, D.A. LaVan, Sample pattern and temperature distribution in nanocalorimetry measurements. J. Therm. Anal. Calorim. 138(5), 3367 (2019)

    Article  CAS  Google Scholar 

  51. F. Yi, M.D. Grapes, D.A. LaVan, Practical guide to the design, fabrication, and calibration of NIST nanocalorimeters. J. Res. Natl. Inst. Std. Technol. 124, 3367 (2019)

    Google Scholar 

  52. F. Tabatabaei, G. Boussinot, R. Spatschek, E.A. Brener, M. Apel, Phase field modeling of rapid crystallization in the phase-change material AIST. J. Appl. Phys. 122(4), 045108 (2017)

    Article  CAS  Google Scholar 

  53. T. Matsunaga, Y. Umetani, N. Yamada, Structural study of a Ag3.4In3.7Sb76.4Te16.5 quadruple compound utilized for phase-change optical disks. Phys. Rev. B. 64(18), 184116 (2001)

    Article  CAS  Google Scholar 

  54. J. Akola, R.O. Jones, Structure of liquid phase change material AgInSbTe from density functional/molecular dynamics simulations. Appl. Phys. Lett. 94(25), 3 (2009)

    Article  CAS  Google Scholar 

  55. J.A. Kalb, F. Spaepen, M. Wuttig, Kinetics of crystal nucleation in undercooled droplets of Sb- and Te-based alloys used for phase change recording. J. Appl. Phys. 98(5), 054910 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Effort by M.K.S. and I.M. was supported by the National Science Foundation, Division of Materials Research CER [Grant No. 1945520]. TEM was performed at the Oregon State University Electron Microscope Facility which is supported by NSF MRI Grant No. 1040588, the Murdock Charitable Trust, and the Oregon Nanoscience and Micro-Technologies Institute. M.K.S would like to thank Dr. John Roehling and Dr. Garth Egan for assistance with thin film deposition and DTEM experiments at LLNL. Portions of this work were performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC., for the US Department of Energy, National Nuclear Security Administration under Contract No. DE-AC52-07NA27344. Work was performed at the Center for Integrated Nanotechnologies, a User Facility operated for the US DOE Office of Science at Sandia National Laboratories (SNL), managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the US DOE’s National Nuclear Security Administration under contract DE-NA-0003525. This work was performed under the Laboratory Directed Research and Development program at SNL. This material is based in part upon work supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award No. DE-SC0013104. Views expressed here do not necessarily represent the views of the US DOE or US Government. Research was performed in part at the NIST Center for Nanoscale Science and Technology. Any mention of commercial products is for information only; it does not imply recommendation or endorsement by the NIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Santala.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 7883 kb)

Supplementary file2 (MP4 18419 kb)

Supplementary file3 (MP4 19180 kb)

Supplementary file4 (MP4 3374 kb)

Supplementary file5 (MP4 3782 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGieson, I., Bird, V.L., Barr, C.M. et al. Crystallization kinetics and thermodynamics of an Ag–In–Sb–Te phase change material using complementary in situ microscopic techniques. Journal of Materials Research 37, 1281–1295 (2022). https://doi.org/10.1557/s43578-022-00486-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00486-5

Keywords

Navigation