Skip to main content
Log in

Amorphous-to-crystalline transition of thin-film TiO2 precursor films to brookite, anatase, and rutile polymorphs

  • Article
  • Focus Issue: In-situ Study of Materials Transformation
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We observe the isothermal amorphous-to-crystalline transition of TiO2 thin films deposited by reactive RF magnetron sputtering with in-situ optical microscopy at several temperatures. The crystalline fraction of single-phase anatase, brookite, and rutile films as a function of time is analyzed within the Johnson–Mehl–Avrami–Kolmogorov framework to extract model parameters. Avrami exponents near 3 for anatase are consistent with 2-dimensional growth and a constant nucleation rate but are significantly higher for brookite and rutile, which we attribute to an increasing nucleation rate. The number of crystallization centers per unit area for rutile is higher than for brookite which in turn is higher than anatase. Total crystallization times for brookite and anatase decrease with increasing film thickness, consistent with a volume-induced nucleation model. Brookite grows anisotropically in contrast to the circular morphology observed for anatase and rutile.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

Materials and data are stored at Oregon State University.

Code availability

Not applicable.

References

  1. A.D. Paola, M. Bellardita, L. Palmisano, Brookite, the least known TiO2 photocatalyst. Catalysts 3, 36 (2013). https://doi.org/10.3390/catal3010036

    Article  CAS  Google Scholar 

  2. H. Tang, K. Prasad, R. Sanjinés, F. Lévy, TiO2 anatase thin films as gas sensors. Sens. Actuators B 26(1–3), 71 (1995). https://doi.org/10.1016/0925-4005(94)01559-Z

    Article  CAS  Google Scholar 

  3. T. Luttrell et al., Why is anatase a better photocatalyst than rutile?—model studies on epitaxial TiO2 films. Sci Rep 4, 4043 (2014). https://doi.org/10.1038/srep04043

    Article  CAS  Google Scholar 

  4. A. Navrotsky, Energetics of nanoparticle oxides: interplay between surface energy and polymorphism. Geochem Trans 4, 34 (2003). https://doi.org/10.1186/1467-4866-4-34

    Article  Google Scholar 

  5. J.E.S. Haggerty et al., High-fraction brookite films from amorphous precursors. Sci Rep 7, 15232 (2017). https://doi.org/10.1038/s41598-017-15364-y

    Article  CAS  Google Scholar 

  6. J.S. Mangum, O. Agirseven, J.E.S. Haggerty, J.D. Perkins, L.T. Schelhas, D.A. Kitchaev, L.M. Garten, D.S. Ginley, M.F. Toney, J. Tate, B.P. Gorman, Selective brookite polymorph formation related to the amorphous precursor state in TiO2 thin films. J. Non-Cryst. Solids 505, 109 (2019). https://doi.org/10.1016/j.jnoncrysol.2018.10.049

    Article  CAS  Google Scholar 

  7. O. Agirseven et al., Crystallization of TiO2 polymorphs from RF-sputtered, amorphous thin-film precursors. AIP Adv. 10, 025109 (2020). https://doi.org/10.1063/1.5140368

    Article  CAS  Google Scholar 

  8. J.S. Mangum, L.M. Garten, D.S. Ginley, B.P. Gorman, Utilizing TiO2 amorphous precursors for polymorph selection: an in situ TEM study of phase formation and kinetics. J Am Ceram Soc. 103, 2899 (2020). https://doi.org/10.1111/jace.16965

    Article  CAS  Google Scholar 

  9. J.W. Christian, The theory of transformations in metals and alloys, part I, 1st edn. (Elsevier, Oxford, 2002)

    Google Scholar 

  10. J. Li, M. Zhang, M. Guo, X.-M. Yang, Kinetic study on phosphate enrichment behavior in CaO–SiO2–FeO–Fe2O3–P2O5 steelmaking slags. High Temp. Mater. Proc. 37(5), 477 (2018). https://doi.org/10.1515/htmp-2016-0241

    Article  CAS  Google Scholar 

  11. M.M. Moghadam, P.W. Voorhees, Thin film phase transformation kinetics: from theory to exp eriment. Scripta Mater. 124, 164–168 (2016). https://doi.org/10.1016/j.scriptamat.2016.07.010

    Article  CAS  Google Scholar 

  12. M.M. Moghadam, E.L. Pang, T. Philippe, P.W. Voorhees, Simulation of phase transformation kinetics in thin films under a constant nucleation rate. Thin Solid Films 612, 437 (2016). https://doi.org/10.1016/j.tsf.2016.06.035

    Article  CAS  Google Scholar 

  13. I. Sinha, R. Mandal, Avrami exponent under transient and heterogeneous nucleation. J. Non-Cryst. Solids 357, 919 (2011). https://doi.org/10.1016/j.jnoncrysol.2010.11.005

    Article  CAS  Google Scholar 

  14. V.I. Trofimov, I.V. Trofimov, J. Kim, The effect of finite film thickness on the crystallization kinetics of amorphous film and microstructure of crystallized film. Thin Solid Films 495(1–2), 398–403 (2006). https://doi.org/10.1016/j.tsf.2005.08.221

    Article  CAS  Google Scholar 

  15. S.A. Mansour, Non-isothermal crystallization kinetics of nano-sized amorphous TiO2 prepared by facile sonochemical hydrolysis route. Ceram. Int. 45(2), 2893–2898 (2019). https://doi.org/10.1016/j.ceramint.2018.07.273

    Article  CAS  Google Scholar 

  16. D. Švadlák, J. Shánělová, J. Málek, L. Pérez-Maqueda, J. Criado, T. Mitsuhashi, Nanocrystallization of anatase in amorphous TiO2. Thermochim. Acta 414(2), 137 (2004). https://doi.org/10.1016/j.tca.2003.12.009

    Article  CAS  Google Scholar 

  17. R. Kužel, L. Nichtová, Z. Matěj, J. Musil, In-situ X-ray diffraction studies of time and thickness dependence of crystallization of amorphous TiO2 thin films and stress evolution. Thin Solid Films 519(5), 1649 (2010). https://doi.org/10.1016/j.tsf.2010.08.122

    Article  CAS  Google Scholar 

  18. J.C. Johnson, S.P. Ahrenkiel, P. Dutta, V.R. Bommisetty, Nucleation and growth of crystalline grains in RF-sputtered TiO2 films. Res. Lett. Nanotechnol. (2009). https://doi.org/10.1155/2009/280797

    Article  Google Scholar 

  19. V.R.V. Ramanan, G.E. Fish, Crystallization kinetics in Fe−B−Si metallic glasses. J. Appl. Phys. 53, 2273 (1982). https://doi.org/10.1063/1.330797

    Article  CAS  Google Scholar 

  20. S. Hatayama, Y. Sutou, D. Ando, J. Koike, Crystallization mechanism and kinetics of Cr2Ge2Te6 phase change material. MRS Commun. 8(3), 1167 (2018). https://doi.org/10.1557/mrc.2018.176

    Article  CAS  Google Scholar 

  21. S.H. Lee, Y. Jung, R. Agarwal, Size-dependent surface-induced heterogeneous nucleation driven phase-change in Ge2Sb2Te5 nanowires. Nano Lett. 8(10), 3303 (2008). https://doi.org/10.1021/nl801698h

    Article  CAS  Google Scholar 

  22. J.M. Escleine, B. Monasse, E. Wey, J.M. Haudin, Influence of specimen thickness on isothermal crystallization kinetics. A theoretical analysis. Colloids Polym. Sci. 262, 366 (1984). https://doi.org/10.1007/BF01410254

    Article  CAS  Google Scholar 

  23. P. Christian, C. Röthel, M. Tazreiter, A. Zimmer, I. Salzmann, R. Resel, O. Werzer, Crystallization of carbamazepine in proximity to its precursor iminostilbene and a silica surface. Cryst. Growth Des. 16(5), 2771 (2016). https://doi.org/10.1021/acs.cgd.6b00090

    Article  CAS  Google Scholar 

  24. A.S. Özcan, K.F. Ludwig Jr., C. Lavoie, C. CabralJr., J.M.E. Harper, R.M. Bradley, Nucleation and growth kinetics of preferred C54 TiSi2 orientations: time-resolved x-ray diffraction measurements. J. Appl. Phys. 92, 5189 (2002). https://doi.org/10.1063/1.1512687

    Article  CAS  Google Scholar 

  25. X. Rocquefelte, F. Goubin, H.-J. Koo, M.-H. Whangbo, S. Jobic, Investigation of the origin of the empirical relationship between refractive index and density on the basis of first principles calculations for the refractive indices of various T. Inorg. Chem. 7(43), 2246 (2004). https://doi.org/10.1021/ic035383r

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported as part of the Center for Next Generation Materials by Design: Incorporating Metastability, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-AC3608GO28308. We thank Joseph Kreb for assistance with film thickness measurements. We acknowledge the use of the Oregon State University MASC cleanroom and the Raman microscope in the Rorrer Laboratory.

Funding

The research leading to these results received funding from the United States Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-AC3608GO28308 (EFRC: Center for Next Generation Materials by Design: Incorporating Metastability).

Author information

Authors and Affiliations

Authors

Contributions

OA performed materials preparation, data collection, and analysis and contributed to the study conception and design. PB contributed to the data collection and analysis. JT designed the study and contributed to analysis. OA wrote the first draft of the manuscript, and all authors reviewed and approved the final version.

Corresponding author

Correspondence to Okan Ağırseven.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ağırseven, O., Biswas, P. & Tate, J. Amorphous-to-crystalline transition of thin-film TiO2 precursor films to brookite, anatase, and rutile polymorphs. Journal of Materials Research 37, 1135–1143 (2022). https://doi.org/10.1557/s43578-021-00478-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00478-x

Keywords

Navigation