Skip to main content
Log in

Synthesis of mesoporous zirconium manganese mixed metal oxide nanowires for photocatalytic reduction of CO2

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A facile hydrothermal route was successfully adopted for the synthesis of novel mixed zirconium manganese oxide (ZrO2–Mn3O4) nanowires with the help of surfactant. The synthesized sample was analyzed by powder XRD, ED-XRF, SEM, FTIR, UV–visible, and XPS analysis. The XRD analysis confirmed the formation of mixed zirconium manganese oxide (ZrO2–Mn3O4) nanowires. ED-XRF analysis provided the chemical composition of the material. The surface properties of the zirconium manganese oxide nanowires were studied by XPS analysis. The pore size distribution and pore volume measurements carried out by gas sorption method confirmed the formation of single pore in nanowires. These nanowires were successfully utilized for the photo reduction of CO2 through water as a solvent under UV light. The nanowires exhibited an average photocatalytic reduction CO2 into CH4 (1.46 μmol g−1 h−1) which is higher than commercial photocatalysts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Z. Fu, G. Zhang, Z. Tang, H. Zhang, Preparation and application of ordered mesoporous metal oxide catalytic materials. Catal Surv. Asia 24(1), 38 (2020)

    Article  CAS  Google Scholar 

  2. T.-Z. Ren, Z.-Y. Yuan, W. Hu, X. Zou, Single crystal manganese oxide hexagonal plates with regulated mesoporous structures. Microporous Mesoporous Mater. 112(1), 467 (2008)

    Article  CAS  Google Scholar 

  3. M. Huang, Y. Zhang, F. Li, L. Zhang, R.S. Ruoff, Z. Wen, Q. Liu, Self-assembly of mesoporous nanotubes assembled from interwoven ultrathin birnessite-type MnO2 nanosheets for asymmetric supercapacitors. Sci. Rep. 4(1), 3878 (2014)

    Article  Google Scholar 

  4. Y. Kohno, H. Ishikawa, T. Tanaka, T. Funabiki, S. Yoshida, Photoreduction of carbon dioxide by hydrogen over magnesium oxide. Phys. Chem. Chem. Phys. 3(6), 1108 (2001)

    Article  CAS  Google Scholar 

  5. N.R. de Tacconi, W. Chanmanee, B.H. Dennis, K. Rajeshwar, Composite copper oxide–copper bromide films for the selective electroreduction of carbon dioxide. J. Mater. Res. 32(9), 1727 (2017)

    Article  Google Scholar 

  6. Y. Song, J. Li, C. Wang, Modification of porphyrin/dipyridine metal complexes on the surface of TiO2 nanotubes with enhanced photocatalytic activity for photoreduction of CO2 into methanol. J. Mater. Res. 33(17), 2612 (2018)

    Article  CAS  Google Scholar 

  7. X. Li, J. Wen, J. Low, Y. Fang, J. Yu, Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel Sci. China Mater. 57(1), 70 (2014)

    Article  Google Scholar 

  8. X. Li, J. Yu, M. Jaroniec, X. Chen, Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119(6), 3962 (2019)

    Article  CAS  Google Scholar 

  9. Q. Xie, W. He, S. Liu, C. Li, J. Zhang, P.K. Wong, Bifunctional S-scheme g-C3N4/Bi/BiVO4 hybrid photocatalysts toward artificial carbon cycling Chinese. J. Catal. 41(1), 140 (2020)

    CAS  Google Scholar 

  10. L. Cheng, D. Zhang, Y. Liao, J. Fan, Q. Xiang, Structural engineering of 3D hierarchical Cd0.8Zn0.2S for selective photocatalytic CO2 reduction. Chin. J. Catal. 42(1), 131 (2021)

    Article  CAS  Google Scholar 

  11. M.M. Nair, H. Yen, F. Kleitz, Nanocast mesoporous mixed metal oxides for catalytic applications. C. R. Chim. 17(7), 641 (2014)

    Article  CAS  Google Scholar 

  12. K.M. Reddy, D. Guin, S.V. Manorama, A.R. Reddy, Selective synthesis of nanosized TiO2 by hydrothermal route: characterization, structure property relation, and photochemical application. J. Mater. Res. 19(9), 2567 (2004)

    Article  CAS  Google Scholar 

  13. C.V. Reddy, B. Babu, I.N. Reddy, J. Shim, Synthesis and characterization of pure tetragonal ZrO2 nanoparticles with enhanced photocatalytic activity Ceram. Int. 44(6), 6940 (2018)

    CAS  Google Scholar 

  14. N.S. Hassan, A.A. Jalil, A review on self-modification of zirconium dioxide nanocatalysts with enhanced visible-light-driven photodegradation of organic pollutants. J. Hazard. Mater. 423, 126996 (2022)

    Article  CAS  Google Scholar 

  15. Y. Kohno, T. Tanaka, T. Funabiki, S. Yoshida, Photoreduction of carbon dioxide with hydrogen over ZrO2. Chem. Commun. (9), 841 (1997)

  16. C.-C. Lo, C.-H. Hung, C.-S. Yuan, J.-F. Wu, Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Sol. Energy Mater. Sol. Cells 91(19), 1765 (2007)

    Article  CAS  Google Scholar 

  17. M.P. Trubelja, D. Potter, J.J. Helble, Effect of process conditions on phase mixtures of sol–gel-synthesized nanoscale orthorhombic, tetragonal, and monoclinic zirconia. J. Mater. Sci. 45(16), 4480 (2010)

    Article  CAS  Google Scholar 

  18. Y. Cao, J.-C. Hu, Z.-S. Hong, J.-F. Deng, K.-N. Fan, Characterization of high-surface-area zirconia aerogel synthesized from combined alcohothermal and supercritical fluid drying techniques. Catal. Lett. 81(1), 107 (2002)

    Article  CAS  Google Scholar 

  19. A.T. Oluwabi, I.O. Acik, A. Katerski, A. Mere, M. Krunks, Structural and electrical characterisation of high-k ZrO2 thin films deposited by chemical spray pyrolysis method. Thin Solid Films 662, 129 (2018)

    Article  CAS  Google Scholar 

  20. J. Li, S. Meng, J. Niu, H. Lu, Electronic structures and optical properties of monoclinic ZrO2 studied by first-principles local density approximation + U approach. J. Adv. Ceram. 6(1), 43 (2017)

    Article  CAS  Google Scholar 

  21. D. Vanderbilt, X. Zhao, D. Ceresoli, Structural and dielectric properties of crystalline and amorphous ZrO2. Thin Solid Films 486(1), 125 (2005)

    Article  CAS  Google Scholar 

  22. D. Xiao, G. He, Z. Sun, J. Lv, P. Jin, C. Zheng, M. Liu, Microstructure, optical and electrical properties of solution-derived peroxo-zirconium oxide gate dielectrics for CMOS application. Ceram. Int. 42(1, Part A), 759 (2016)

    Article  CAS  Google Scholar 

  23. A. Quintana, A. Altube, E. García-Lecina, S. Suriñach, M.D. Baró, J. Sort, E. Pellicer, M. Guerrero, A facile co-precipitation synthesis of heterostructured ZrO2|ZnO nanoparticles as efficient photocatalysts for wastewater treatment. J. Mater. Sci. 52(24), 13779 (2017)

    Article  CAS  Google Scholar 

  24. X. Wang, B. Zhai, M. Yang, W. Han, X. Shao, ZrO2/CeO2 nanocomposite: two step synthesis, microstructure, and visible-light photocatalytic activity. Mater. Lett. 112, 90 (2013)

    Article  CAS  Google Scholar 

  25. H.R. Pouretedal, Z. Tofangsazi, M.H. Keshavarz, Photocatalytic activity of mixture of ZrO2/SnO2, ZrO2/CeO2 and SnO2/CeO2 nanoparticles. J. Alloys Compd. 513, 359 (2012)

    Article  CAS  Google Scholar 

  26. M.W. Kadi, R.M. Mohamed, Enhanced photocatalytic activity of ZrO2-SiO2 nanoparticles by platinum doping. Int. J. Photoenergy 2013, 812097 (2013)

    Article  Google Scholar 

  27. R. Wang, Y. Hu, J. Du, L. Xu, Y. Fu, Boosting the visible-light activity of ZrO2/g-C3N4 by controlling the crystal structure of ZrO2. J. Mater. Res. 36(15), 3086 (2021)

    Article  CAS  Google Scholar 

  28. X.M. Wang, P. Xiao, Solvothermal synthesis of titania-zirconia composite. J. Mater. Res. 21(2), 355 (2006)

    Article  CAS  Google Scholar 

  29. N.M. Hosny, A. Dahshan, Facile synthesis and optical band gap calculation of Mn3O4 nanoparticles. Mater. Chem. Phys. 137(2), 637 (2012)

    Article  CAS  Google Scholar 

  30. A. Jha, R. Thapa, K.K. Chattopadhyay, Structural transformation from Mn3O4 nanorods to nanoparticles and band gap tuning via Zn doping. Mater. Res. Bull. 47(3), 813 (2012)

    Article  CAS  Google Scholar 

  31. S. Ramezanpour, I. Sheikhshoaie, M. Khatamian, Constructing Mn3O4/Cu hybrid nanorods as superior photocatalyst. Nano-Struct. Nano-Objects. 16, 396 (2018)

    Article  CAS  Google Scholar 

  32. L. Kang, M. Zhang, Z.-H. Liu, K. Ooi, IR spectra of manganese oxides with either layered or tunnel structures. Spectrochim. Acta Part A 67(3), 864 (2007)

    Article  Google Scholar 

  33. L.A. Pérez-Maqueda, E. Matijević, Preparation and characterization of nanosized zirconium (hydrous) oxide particles. J. Mater. Res. 12(12), 3286 (1997)

    Article  Google Scholar 

  34. B.R. Strohmeier, Zinc aluminate (ZnAl2O4) by XPS. Surf. Sci. Spectra. 3(2), 128 (1994)

    Article  CAS  Google Scholar 

  35. D.D. Sarma, C.N.R. Rao, XPES studies of oxides of second- and third-row transition metals including rare earths. J. Electron. Spectrosc. Relat. Phenom. 20(1), 25 (1980)

    Article  CAS  Google Scholar 

  36. V. Di Castro, G. Polzonetti, XPS study of MnO oxidation. J. Electron. Spectrosc. Relat. Phenom. 48(1), 117 (1989)

    Article  Google Scholar 

  37. M. Oku, K. Hirokawa, S. Ikeda, X-ray photoelectron spectroscopy of manganese—oxygen systems. J. Electron. Spectrosc. Relat. Phenom. 7(5), 465 (1975)

    Article  CAS  Google Scholar 

  38. V.A.M. Brabers, F.M. van Setten, P.S.A. Knapen, X-ray photoelectron spectroscopy study of the cation valencies in nickel manganite. J. Solid State Chem. 49(1), 93 (1983)

    Article  CAS  Google Scholar 

  39. B.J. Tan, K.J. Klabunde, P.M.A. Sherwood, XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica. J. Am. Chem. Soc. 113(3), 855 (1991)

    Article  CAS  Google Scholar 

  40. D. Majumdar, D. Chatterjee, X-ray photoelectron spectroscopic studies on yttria, zirconia, and yttria-stabilized zirconia. J. Appl. Phys. 70(2), 988 (1991)

    Article  CAS  Google Scholar 

  41. S. Ardizzone, M.G. Cattania, P. Lugo, Interfacial electrostatic behaviour of oxides: correlations with structural and surface parameters of the phase. Electrochim. Acta. 39(11), 1509 (1994)

    Article  CAS  Google Scholar 

  42. H. Sano, T. Shono, H. Sonoda, T. Takatsu, B. Ciucchi, R. Carvalho, D.H. Pashley, Relationship between surface area for adhesion and tensile bond strength—evaluation of a micro-tensile bond test. Dent. Mater. 10(4), 236 (1994)

    Article  CAS  Google Scholar 

  43. R. Haul, S.J. Gregg, K. S.W. Sing, Adsorption, surface area and porosity. 2. Auflage, Academic Press, London 1982. 303 Seiten, Preis: $ 49.50. Berichte der Bunsengesellschaft für physikalische Chemie. 86(10), 957 (1982).

  44. X. Fei, H. Tan, B. Cheng, B. Zhu, L. Zhang, 2D/2D Black phosphorus/g-C3N4 S-scheme heterojunction photocatalysts for CO2 reduction investigated using DFT calculations. Acta Phys. Chim. Sin. 37(6), 2010027 (2021)

    Google Scholar 

  45. L. Matějová, K. Kočí, M. Reli, L. Čapek, V. Matějka, O. Šolcová, L. Obalová, On sol–gel derived Au-enriched TiO2 and TiO2-ZrO2 photocatalysts and their investigation in photocatalytic reduction of carbon dioxide. Appl. Surf. Sci. 285, 688 (2013)

    Article  Google Scholar 

  46. T. Wang, X. Meng, G. Liu, K. Chang, P. Li, Q. Kang, L. Liu, M. Li, S. Ouyang, J. Ye, In situ synthesis of ordered mesoporous Co-doped TiO2 and its enhanced photocatalytic activity and selectivity for the reduction of CO2. J. Mater. Chem. A 3(18), 9491 (2015)

    Article  CAS  Google Scholar 

  47. R.-H. Zhou, Z.-H. Wei, Y.-Y. Li, Z.-J. Li, H.-C. Yao, Construction of visible light–responsive Z-scheme CdS/BiOI photocatalyst with enhanced photocatalytic CO2 reduction activity. J. Mater. Res. 34(23), 3907 (2019)

    Article  CAS  Google Scholar 

  48. H. Li, Y. Gao, Y. Zhou, F. Fan, Q. Han, Q. Xu, X. Wang, M. Xiao, C. Li, Z. Zou, Construction and nanoscale detection of interfacial charge transfer of elegant Z-scheme WO3/Au/In2S3 nanowire arrays. Nano Lett. 16(9), 5547 (2016)

    Article  CAS  Google Scholar 

  49. X. Zhang, G. Zuo, X. Lu, C. Tang, S. Cao, M. Yu, Anatase TiO2 sheet-assisted synthesis of Ti3+ self-doped mixed phase TiO2 sheet with superior visible-light photocatalytic performance: roles of anatase TiO2 sheet. J. Colloid Interface Sci. 490, 774 (2017)

    Article  CAS  Google Scholar 

  50. Q. Liu, M. Xu, B. Zhou, R. Liu, F. Tao, G. Mao, Unique zinc germanium oxynitride hyperbranched nanostructures with enhanced visible-light photocatalytic activity for CO2 reduction. Eur. J. Inorg. Chem. 2017(15), 2195 (2017)

    Article  CAS  Google Scholar 

  51. L. Ye, J. Mao, T. Peng, L. Zan, Y. Zhang, Opposite photocatalytic activity orders of low-index facets of anatase TiO2 for liquid phase dye degradation and gaseous phase CO2 photoreduction. Phys. Chem. Chem. Phys. 16(29), 15675 (2014)

    Article  CAS  Google Scholar 

  52. K. Kim, A. Razzaq, S. Sorcar, Y. Park, C.A. Grimes, S.-I. In, Hybrid mesoporous Cu2ZnSnS4 (CZTS)–TiO2 photocatalyst for efficient photocatalytic conversion of CO2 into CH4 under solar irradiation. RSC Adv. 6(45), 38964 (2016)

    Article  CAS  Google Scholar 

  53. J. Low, L. Zhang, T. Tong, B. Shen, J. Yu, TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J. Catal. 361, 255 (2018)

    Article  CAS  Google Scholar 

  54. J. Yu, J. Low, W. Xiao, P. Zhou, M. Jaroniec, Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J. Am. Chem. Soc. 136(25), 8839 (2014)

    Article  CAS  Google Scholar 

  55. W. Tu, Y. Zhou, H. Li, P. Li, Z. Zou, Au@TiO2 yolk–shell hollow spheres for plasmon-induced photocatalytic reduction of CO2 to solar fuel via a local electromagnetic field. Nanoscale 7(34), 14232 (2015)

    Article  CAS  Google Scholar 

  56. M. Manzanares, C. Fàbrega, J. OriolOssó, L.F. Vega, T. Andreu, J.R. Morante, Engineering the TiO2 outermost layers using magnesium for carbon dioxide photoreduction. Appl. Catal. B 150–151, 57 (2014)

    Article  Google Scholar 

  57. K. Wang, Q. Li, B. Liu, B. Cheng, W. Ho, J. Yu, Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl. Catal. B 176–177, 44 (2015)

    Article  Google Scholar 

  58. J. Jin, J. Yu, D. Guo, C. Cui, W. Ho, A hierarchical Z-scheme CdS–WO3 photocatalyst with enhanced CO2 reduction activity. Small 11(39), 5262 (2015)

    Article  CAS  Google Scholar 

  59. Y. Zhou, Z. Tian, Z. Zhao, Q. Liu, J. Kou, X. Chen, J. Gao, S. Yan, Z. Zou, High-yield synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light. ACS Appl. Mater. Interfaces. 3(9), 3594 (2011)

    Article  CAS  Google Scholar 

  60. K. Xie, N. Umezawa, N. Zhang, P. Reunchan, Y. Zhang, J. Ye, Self-doped SrTiO3−δ photocatalyst with enhanced activity for artificial photosynthesis under visible light. Energy Environ. Sci. 4(10), 4211 (2011)

    Article  CAS  Google Scholar 

  61. C. Wang, M. Cai, Y. Liu, F. Yang, H. Zhang, J. Liu, S. Li, Facile construction of novel organic–inorganic tetra (4-carboxyphenyl) porphyrin/Bi2MoO6 heterojunction for tetracycline degradation: Performance, degradation pathways, intermediate toxicity analysis and mechanism insight. J. Colloid Interface Sci. 605, 727 (2022)

    Article  CAS  Google Scholar 

  62. S. Li, C. Wang, Y. Liu, B. Xue, J. Chen, H. Wang, Y. Liu, Facile preparation of a novel Bi2WO6/calcined mussel shell composite photocatalyst with enhanced photocatalytic performance. Catalysts 10(10), 1166 (2020)

    Article  CAS  Google Scholar 

  63. S. Li, C. Wang, M. Cai, F. Yang, Y. Liu, J. Chen, P. Zhang, X. Li, X. Chen, Facile fabrication of TaON/Bi2MoO6 core–shell S-scheme heterojunction nanofibers for boosting visible-light catalytic levofloxacin degradation and Cr(VI) reduction. Chem. Eng. J. 428, 131158 (2022)

    Article  CAS  Google Scholar 

  64. S. Li, C. Wang, Y. Liu, B. Xue, W. Jiang, Y. Liu, L. Mo, X. Chen, Photocatalytic degradation of antibiotics using a novel Ag/Ag2S/Bi2MoO6 plasmonic p-n heterojunction photocatalyst: mineralization activity, degradation pathways and boosted charge separation mechanism. Chem. Eng. J. 415, 128991 (2021)

    Article  CAS  Google Scholar 

  65. R.S. Mulliken, A New electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J. Chem. Phys. 2(11), 782 (1934)

    Article  CAS  Google Scholar 

  66. B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum, C.P. Kubiak, Photochemical and photoelectrochemical reduction of CO2. Annu. Rev. Phys. Chem. 63(1), 541 (2012)

    Article  CAS  Google Scholar 

  67. S. Nahar, M.F.M. Zain, A.A.H. Kadhum, H.A. Hasan, M.R. Hasan, Advances in photocatalytic CO2 reduction with water: a review. Materials (Basel) 10(6), 629 (2017)

    Article  Google Scholar 

  68. S. San Martín, M.J. Rivero, I. Ortiz, Unravelling the mechanisms that drive the performance of photocatalytic hydrogen production. Catalysts 10(8), 901 (2020)

    Article  Google Scholar 

  69. S.R. Lingampalli, M.M. Ayyub, C.N.R. Rao, Recent progress in the photocatalytic reduction of carbon dioxide. ACS Omega 2(6), 2740 (2017)

    Article  CAS  Google Scholar 

  70. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309 (1938)

    Article  CAS  Google Scholar 

  71. E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73(1), 373 (1951)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Athar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farid, M.A., Ijaz, S., Ashiq, M.N. et al. Synthesis of mesoporous zirconium manganese mixed metal oxide nanowires for photocatalytic reduction of CO2. Journal of Materials Research 37, 522–532 (2022). https://doi.org/10.1557/s43578-021-00463-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00463-4

Keywords

Navigation