Skip to main content
Log in

Efficient light-confinement in heterostructured transition metal dichalcogenide-based nanoscrolls for high-performance photonic devices

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The light-matter interaction in the 2D materials can greatly be enhanced by spirally rolling them into nanoscroll (NS) structures. Hybridization of such 2D material NSs with high yield quantum dots produces type-II band alignment at the heterostructure interface. The combination of enhanced photoabsorption and occurrence of internal reflections at NS wall stimulates coherent lasing action with an unprecedently low lasing threshold and enhances the photoresponsivity by almost 3000 fold compared to its planar counterpart. Furthermore, the NS morphology imparts photosensors with an inherent ability to detect polarization. Finally, the charge transfer efficiency in NSs is enhanced by the formation of heterojunctions after intercalation of graphene. Our approach enables novel ways to develop high-performance flexible devices toward future applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors M. Hofmann, Y. P. Hsieh and/or Y. F. Chen upon reasonable request.

References

  1. T. Edvinsson, R. Soc, Open Sci. 5, 180387 (2018)

    CAS  Google Scholar 

  2. Z. Peng, X. Chen, Y. Fan, D.J. Srolovitz, D. Lei, Light Sci. Appl. 9, 190 (2020)

    Article  CAS  Google Scholar 

  3. R. Ghosh, K. Yadav, M. Kataria, H.-I. Lin, C.R. Paul Inbaraj, Y.-M. Liao, Y. Nguyen, C.-H. Lu, M. Hofmann, R. Sankar, W.-H. Shih, Y.-P. Hsieh, Y.-F. Chen, ACS Appl. Mater. Interfaces 11, 26518 (2019)

    Article  CAS  Google Scholar 

  4. P. Ulloa, A. Latgé, L.E. Oliveira, M. Pacheco, Nanoscale Res. Lett. 8, 384 (2013)

    Article  Google Scholar 

  5. R. Ghosh, H.-I. Lin, Y.-S. Chen, M. Singh, Z.-L. Yen, S. Chiu, H.-Y. Lin, K.P. Bera, Y.-M. Liao, M. Hofmann, Y.-P. Hsieh, Y.-F. Chen, Small 16, 2003944 (2020)

    Article  CAS  Google Scholar 

  6. C. Janisch, H. Song, C. Zhou, Z. Lin, A. Elías, D. Ji, M. Terrones, Q. Gan, Z. Liu, 2D Mater. 3, 025017 (2016)

    Article  Google Scholar 

  7. R. Ghosh, Y.-P. Hsieh, Y.-F. Chen, Laser-Assisted 2D Material-Based Highly Responsive Flexible Photosensor, Presented at Frontiers in Optics / Laser Science, Washington, DC, 2020/09/14, 2020.

  8. X. Fang, P. Wei, L. Wang, X. Wang, B. Chen, Q. He, Q. Yue, J. Zhang, W. Zhao, J. Wang, G. Lu, H. Zhang, W. Huang, X. Huang, H. Li, ACS Appl. Mater. Interfaces 10, 13011 (2018)

    Article  CAS  Google Scholar 

  9. W. Shi, Y. Guo, Z. Zhang, W. Guo, J. Phys. Chem. Lett. 9, 6841 (2018)

    Article  CAS  Google Scholar 

  10. L. Wang, Q. Yue, C. Pei, H. Fan, J. Dai, X. Huang, H. Li, W. Huang, Nano Res. 13, 959 (2020)

    Article  CAS  Google Scholar 

  11. J. Meng, G. Wang, X. Li, X. Lu, J. Zhang, H. Yu, W. Chen, L. Du, M. Liao, J. Zhao, P. Chen, J. Zhu, X. Bai, D. Shi, G. Zhang, Small 12, 3770 (2016)

    Article  CAS  Google Scholar 

  12. R. Liu, F. Wang, L. Liu, X. He, J. Chen, Y. Li, T. Zhai, Small Struct. 2, 2000136 (2021)

    Article  CAS  Google Scholar 

  13. H. Yao, L. Liu, Z. Wang, H. Li, L. Chen, M.E. Pam, W. Chen, H.Y. Yang, W. Zhang, Y. Shi, Nanoscale 10, 6105 (2018)

    Article  CAS  Google Scholar 

  14. X. Cui, Z. Kong, E. Gao, D. Huang, Y. Hao, H. Shen, C.-A. Di, Z. Xu, J. Zheng, D. Zhu, Nat. Commun. 9, 1301 (2018)

    Article  Google Scholar 

  15. A. Berkdemir, H.R. Gutiérrez, A.R. Botello-Méndez, N. Perea-López, A.L. Elías, C.-I. Chia, B. Wang, V.H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, M. Terrones, Sci. Rep. 3, 1755 (2013)

    Article  Google Scholar 

  16. A. Castellanos-Gomez, R. Roldán, E. Cappelluti, M. Buscema, F. Guinea, H.S.J. van der Zant, G.A. Steele, ACS Nano 13, 5361 (2013)

    CAS  Google Scholar 

  17. Y. Wang, C. Cong, W. Yang, J. Shang, N. Peimyoo, Y. Chen, J. Kang, J. Wang, W. Huang, T. Yu, Nano Res. 8, 2562 (2015)

    Article  CAS  Google Scholar 

  18. E. Blundo, M. Felici, T. Yildirim, G. Pettinari, D. Tedeschi, A. Miriametro, B. Liu, W. Ma, Y. Lu, A. Polimeni, Phys. Rev. Res. 2, 012024 (2020)

    Article  CAS  Google Scholar 

  19. H.-W. Hu, G. Haider, Y.-M. Liao, P.K. Roy, R. Ravindranath, H.-T. Chang, C.-H. Lu, C.-Y. Tseng, T.-Y. Lin, W.-H. Shih, Y.-F. Chen, Adv. Mater. 29, 1703549 (2017)

    Article  Google Scholar 

  20. T.-M. Sun, C.S. Wang, C.-S. Liao, S.-Y. Lin, P. Perumal, C.-W. Chiang, Y.-F. Chen, ACS Nano 9, 12436–12441 (2015)

    Article  CAS  Google Scholar 

  21. J. Zhou, J. Chen, Y. Ge, Y. Shao, Nanophotonics 2020, 9 (1855)

    Google Scholar 

  22. S. Wang, J. Fu, F. Zhang, R. Huan, T. Liu, X. Zeng, Nanoscale Res. Lett. 15, 87 (2020)

    Article  CAS  Google Scholar 

  23. Y. Xu, X. Wang, W.L. Zhang, F. Lv, S. Guo, Chem. Soc. Rev. 47, 586 (2018)

    Article  CAS  Google Scholar 

  24. U. Junthorn, S. Hou, C. Li, A. Hatta, H. Furuta, Int. J. Electrochem. Sci. 12, 3814 (2017)

    Google Scholar 

  25. S. Wang, Q. Luo, W.-H. Fang, R. Long, J. Phys. Chem. Lett. 10, 1234 (2019)

    Article  CAS  Google Scholar 

  26. S.-Y. Tang, C.-C. Yang, T.-Y. Su, T.-Y. Yang, S.-C. Wu, Y.-C. Hsu, Y.-Z. Chen, T.-N. Lin, J.-L. Shen, H.-N. Lin, P.-W. Chiu, H.-C. Kuo, Y.-L. Chueh, ACS Nano 14, 12668 (2020)

    Article  CAS  Google Scholar 

  27. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Solid State Commun. 146, 351 (2008)

    Article  CAS  Google Scholar 

  28. W. Chen, J. Castro, S. Ahn, X. Li, O. Vazquez-Mena, Adv. Mater. 31, 1807894 (2019)

    Article  Google Scholar 

  29. L. Banszerus, M. Schmitz, S. Engels, J. Dauber, M. Oellers, F. Haupt, K. Watanabe, T. Taniguchi, B. Beschoten, C. Stampfer, Sci. Adv. 1, e1500222 (2015)

    Article  Google Scholar 

  30. J. Tian, A. Katsounaros, D. Smith, Y. Hao, IEEE Trans. Electron Devices 62, 3433 (2015)

    Article  CAS  Google Scholar 

  31. J.-B. Wu, M.-L. Lin, X. Cong, H.-N. Liu, P.-H. Tan, Chem. Soc. Rev. 2018, 47 (1822)

    Google Scholar 

  32. W. Yu, S. Li, Y. Zhang, W. Ma, T. Sun, J. Yuan, K. Fu, Q. Bao, Small 13, 1700268 (2017)

    Article  Google Scholar 

  33. B. Kang, Y. Kim, W.J. Yoo, C. Lee, Small 14, 1802593 (2018)

    Article  Google Scholar 

  34. C. Lan, C. Li, S. Wang, T. He, Z. Zhou, D. Wei, H. Guo, H. Yang, Y. Liu, J. Mater. Chem. C 5, 1494 (2017)

    Article  CAS  Google Scholar 

  35. Y.J. Noori, S. Thomas, S. Ramadan, D.E. Smith, V.K. Greenacre, N. Abdelazim, Y. Han, R. Beanland, A.L. Hector, N. Klein, G. Reid, P.N. Bartlett, C.H. Kees de Groot, ACS Appl. Mater. Interfaces 12, 49786 (2020)

    Article  CAS  Google Scholar 

  36. J.D. Mehew, S. Unal, E. Torres Alonso, G.F. Jones, S. Fadhil Ramadhan, M.F. Craciun, S. Russo, Adv. Mater. 29, 1700222 (2017)

    Article  Google Scholar 

  37. G.-H. Jung, S. Yoo, Q.-H. Park, Nanophotonics 8, 263 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Souvik Sasmal (Tata Institute of Fundamental Research, Mumbai, India) for comments on the manuscript. This work was financially supported by the “Advanced Research Centre for Green Materials Science and Technology” from The Featured Area Research Centre Program within the framework of the Higher Education Sprout Project by the Ministry of Education (110L9006) and the Ministry of Science and Technology in Taiwan (MOST 110-2524-F-002-043 and MOST 109-2112-M-002-027).

Author information

Authors and Affiliations

Authors

Contributions

RG and YFC conceived the idea of hybrid WS2 NS based device fabrication. YSC synthesized the WS2 film via CVD and RG synthesized the scrolls. RG performed structural and optical characterizations of the materials. HIL simulated |E|2 field distribution in the scroll-based device using FDTD software. RG performed electrical and optical measurements of the device. RG, MH, YPH, and YFC discussed the mechanism of WS2 scroll-based device. YFC supervised the project. RG, MH, YPH, and YFC contributed to writing the manuscript through the input of all the authors. All the authors were involved in analyzing the data.

Corresponding authors

Correspondence to Rapti Ghosh, Mario Hofmann, Ya-Ping Hsieh or Yang-Fang Chen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

43578_2021_460_MOESM1_ESM.pdf

Supplementary file1 Structural characterization (AFM, HRTEM, SAED) of WS2 film and HRTEM of CdSe-ZnS core-shell QD. Emission spectra of WS2 film and WS2 NS. Comparative lasing action study of the WS2 scroll structure at different emissive energy. TRPL spectra of the hybridized scroll structure. Angular independence of the random lasing device. OM images of the electrode grown on both WS2 film and the scroll-based devices. Detail calculation of photoresponsivity, gain, and detectivity. Photocurrent comparison of all the devices. FDTD simulation study of scroll. SEM image of the hetero-film. Table of comparison of different scroll-based devices. (PDF 975 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, R., Lin, HI., Chen, YS. et al. Efficient light-confinement in heterostructured transition metal dichalcogenide-based nanoscrolls for high-performance photonic devices. Journal of Materials Research 37, 660–669 (2022). https://doi.org/10.1557/s43578-021-00460-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00460-7

Keywords

Navigation