Skip to main content

Advertisement

Log in

Facile fabrication of defect-induced 2D-stanene/stanene-oxide nano-sheet structure material through etching of SnOx thin film by the process of successive Ar+ ion sputtering

  • Article
  • Focus Issue: In-situ Study of Materials Transformation
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In-situ Ar+-ion etching process is used to extract the defect-induced ultrathin 2D-stanene/stanene-oxide structured nano-materials from transparent conducting tin-dioxide (SnOx) thin films by KRATOS SUPRA spectrometer measurement system. In each etch- cycle during in situ successive Ar+-ion sputtering process, x-ray photoelectron (XPS) and ultraviolet photoemission spectroscopy (UPS) were measured and confirmed the formation of different crystal structures of defect-induced 2D-stanene and/or 2D-stanene oxide ultra-thin films. In situ XPS and UPS spectral results confirmed the formation of different defect-induced oxidation states of “Sn” and their change of density of states, valence band maximum and work functions of the extracted defect-induced ultra-thin 2D-stanene/stanene-oxide films. During etching process (τetch = 0–4000 s) the thickness is changes from 200 nm (SnOx) → ≈2.5 nm (2D-Stanene). These results, further revealed with the ex-situ Raman spectra measurements, where we have observed that the 2D-stanene/stanene-oxide is extracted from SnOx thin films by this successive Ar+-ion etching process. This process provides an option to realize aggressively scaled nanostructure device-based 2D-stanene/stanene-oxide materials with high-precision control that could be useful for fabrication of future electronic devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S. Lebègue, T. Björkman, M. Klintenberg, R.M. Nieminen, O. Eriksson, Two-dimensional materials from data filtering and ab initio calculation. Phys. Rev. X 3, 075114 (2014)

    Google Scholar 

  2. Y. Xu, B. Yan, H.-J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, S.-C. Zhang, Large gap quantum spin Hall insulators in tin-films. Phy. Rev. Lett. 111, 136804 (2013)

    Article  Google Scholar 

  3. G.F. Zhang, Y. Li, C.J. Wu, Honeycom lattice with multiorbital structure: Topological and quantum anomalous Hall insulators with large gaps. Phys. Rev. B 90, 031002 (2013)

    Google Scholar 

  4. Y. Xu, Z. Gan, S.C. Zhang, Enhanced thermoelectric performance and anomalous Seebeck effects in topological insulators. Phys. Rev. Lett. 112, 226801 (2014)

    Article  Google Scholar 

  5. J. Wang, Y. Xu, S.C. Zhang, Two-dimensional time-reversal-invariant topological superconductivity in a doped quantum spin-Hall insulator. Phys. Rev. B 90, 054503 (2014)

    Article  CAS  Google Scholar 

  6. S. Rachel, M. Ezawa, Giant Magneto-resistance and perfect spin filter in Silicene, Germanene and stanene. Phys Rev B 89, 195303 (2014)

    Article  Google Scholar 

  7. S.C. Wu, G. Shan, B.H. Yan, Prediction of near-room-temperature quantum anomalous Hall effect on honeycomb materials. Phy. Rev. Lett. 113, 256401 (2014)

    Article  Google Scholar 

  8. S. Cahangirov, M. Topsakal, E. Aktürk, H. Sahin, S. Ciraci, Two- and One-dimensional Honeycomb Structure of Silicon and germanium. Phy. Rev. Lett. 102, 236804 (2009)

    Article  CAS  Google Scholar 

  9. G.G. Guzmán-Verri, L.C. Lew Yan Voon, Electronic structure of silicon-based nanostructure. Phy. Rev. B 50, 7567 (1994)

    Article  Google Scholar 

  10. F.-F. Zhu, W.-J. Chen, Y. Xu, C.-L. Gao, D.-D. Gaun, C.-H. Liu, D. Qian, S.-C. Zhang, J.F. Jia, Epitaxial growth of two-dimensional stanene. Nat. Mater. 14, 1020 (2015)

    Article  CAS  Google Scholar 

  11. S. Saxena, R.P. Chaudhary, S. Shukla, Stanene: atomically thick free-standing layer of 2D hexagonal tin. Sci. Rep. 10, 31073 (2016)

    Article  Google Scholar 

  12. S.C. Ray, M.K. Karanjai, D. DasGupta, Preparation and Study of doped and undoped tin-dioxide films by open air chemical vapour deposition technique. Thin Solid Films 307, 221 (1997)

    Article  CAS  Google Scholar 

  13. Y. Li, H.T. Ban, M.J. Yang, Highly sensitive NH3 gas sensors based on novel polypyrrole-coated SnO2 nanosheet nanocomposites. Sens. Actuators B 224, 449 (2016)

    Article  CAS  Google Scholar 

  14. J. Chastain, R.C. Jr King (ed), Handbook of X-ray Photoelectron Spectroscopy (Electronics Inc., Eden Prairie, 1995), p 126.

  15. M. Fondell, M. Gorgoi, M. Bomana, A. Lindblada, An HAXPES study of Sn, SnS, SnO and SnO2. J. Electron Spectrosc. Relat. Phenom. 195, 195 (2014)

    Article  CAS  Google Scholar 

  16. A. Mokadem, M. Bouslama, B. Kharoubi, A. Ouerdane, R. Khenata, M. Guezzoul, A. Baizid, M. Abdelkrim, K.B. Bensassi, S.H. Naqib, X. Wang, XPS, AES and UPS investigation of SnO2/Si and DFT-based theoretical study within the mBJ-GGA scheme. Surf. Rev. Lett. 28(02), 2050048 (2021)

    Article  CAS  Google Scholar 

  17. J.Y. Jung, S.-B. Lee, H.-Y. Le, Y.-C. Joo, Y.-B. Park, Electrochemical Migration Characteristics of Eutectic Sn-Pb Solder Alloy in NaCl and Na2SO4 Solutions. J. Electron. Mater. 38(5), 691 (2009)

    Article  CAS  Google Scholar 

  18. Z.H. Wang, X. He, X. Wang, Z. Han, D.Y. Geng, Y.L. Zhu, Z.D. Zhang, Magnetic and microwave-absorption properties of SnO-coated α-Fe (Sn) nano-capsules. J. Phys. D 43, 495404 (2010)

    Article  Google Scholar 

  19. S. Cho, J. Yu, K. Kang, D.-Y. Shih, The oxidation of lead-free Sn alloys by electrochemical reduction analysis. JOM 57, 50 (2005)

    Article  CAS  Google Scholar 

  20. E.L. Peltzer y Blancá, A. Svane, N.E. Christensen, C.O. Rodríguez, O.M. Cappannini, M.S. Moreno, Calculated static and dynamic properties of β-Sn and Sn-O compounds. Phy. Rev. B 48, 12 (1993)

    Article  Google Scholar 

  21. J. Geurts, S. Rau, W. Richter, F.J. Schmitte, SnO films and their oxidation to SnO2: Raman scattering, IR reflectivity and x-ray diffraction studies. Thin Solid Films 121, 217 (1984)

    Article  CAS  Google Scholar 

  22. V. Kumar, A. Govind, R. Nagarajan, Optical and photocatalytic properties of heavily F-doped SnO2 nanocrystals by novel single-source precursor approach. Inorg. Chem. 50, 5637 (2011)

    Article  CAS  Google Scholar 

  23. H. Kameo, D. Izumi, H. Matsuzaka, Synthesis, structure, and bonding properties of hypercoordinate triorganotin compounds featuring three O→Sn interactions. Eur. J. Inorg. Chem. 2021, 2539 (2021)

    Article  CAS  Google Scholar 

  24. R.G. Drabeski, J.V. Gunha, A. Novatski, G.B. Souza, S.M. Tebcherani, E.T. Kubaski, D. TonioloDias, Raman and photoacoustic spectroscopies of SnO2 thin films deposited by spin coating technique. Vib. Spectrosc. 109, 3094 (2020)

    Article  Google Scholar 

  25. E. Maggiore, D.R. Galimberti, M. Tommasini, M.-P. Gaigeot, P.M. Ossi, The contribution of surfaces to the Raman spectrum of snow. Appl. Surf. Sci. 515, 146029 (2020)

    Article  CAS  Google Scholar 

  26. S. Saxena, P. Chaudhary, S. Shukla, Stanene: atomically thick free-standing layer of 2D hexagonal tin. Sci. Rep. 6, 31073 (2016)

    Article  CAS  Google Scholar 

  27. S. Sarma, B. Ghosh, S.C. Ray, H.T. Wang, T.S. Mahule, W.F. Pong, Electronic structure and magnetic behaviours of exfoliated MoS2 nanosheets. J. Phys. Condens. Matter 31, 135501 (2019)

    Article  Google Scholar 

  28. Y. Park, V. Choong, Y. Gao, B.R. Hsieh, C.W. Tang, Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy. Appl. Phys. Lett. 68, 2699 (1996)

    Article  CAS  Google Scholar 

  29. Y. Mohamed, S.J. Lee, Y. Jang, J.S. Kim, C.S. Hwang, D.-Y. Cho, X-ray spectroscopy study on the electronic structure of Sn-added p-type SnO films. J. Phys. Conds. Mater. 32, 065502 (2020)

    Article  CAS  Google Scholar 

  30. J.M. Themlin, R. Sporken, J. Darville, R. Caudano, J.M. Gilles, R.L. Johnson, Phys. Rev. B 42, 11914 (1990)

    Article  CAS  Google Scholar 

  31. P. De Padova, M. Fanfoni, R. Larciprete, M. Mangiantini, S. Priori, P. Perfetti, A synchrotron radiation photoemission study of the oxidation of tin. Surf. Sci. 313, 379 (1994)

    Article  Google Scholar 

  32. P. De Padova, R. Larciprete, C. Ottaviani, C. Quaresima, P. Perfetti, E. Borsella, C. Astaldi, C. Comicioli, C. Crotti, M. Matteucci, M. Zacchigna, K. Prince, Synchrotron radiation photoelectron spectroscopy of the O(2s) core level as a tool for monitoring the reducing effects of ion bombardment on SnO2 thin films. Appl. Surf. Sci. 104–105, 349 (1996)

    Article  Google Scholar 

  33. M.J. Wahila, K.T. Butler, Z.W. Lebens-Higgins, C.H. Hendon, A.S. Nandur, R.E. Treharne, N.F. Quackenbush, S. Sallis, K. Mason, H. Paik, D.G. Schlom, J.C. Woicik, J. Guo, D.A. Arena, B.E. White Jr., G.W. Watson, A. Walsh, L.F.J. Piper, Lone-pair stabilization in transparent amorphous tin oxides: a potential route to p-type conduction pathways. Chem. Mater. 28, 4706 (2016)

    Article  CAS  Google Scholar 

  34. J. Robertsen, Electronic structure of SnO2, GeO2, PbO2, TeO2 and MgF2. J. Phys. C 12, 4767 (1979)

    Article  Google Scholar 

Download references

Acknowledgments

Prof. Ray (S.C.R.) gratefully acknowledge the financial support received from the National Research Foundation (NRF), South Africa (Grant No. EQP13091742446) for purchasing the KRATOS AXIS Supra* XPS spectrometer equipment that installed in 2014 at the University of South Africa (UNISA), Florida Science Campus, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sekhar C. Ray.

Ethics declarations

Conflict of interest

Author has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, S.C. Facile fabrication of defect-induced 2D-stanene/stanene-oxide nano-sheet structure material through etching of SnOx thin film by the process of successive Ar+ ion sputtering. Journal of Materials Research 37, 1164–1171 (2022). https://doi.org/10.1557/s43578-021-00457-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00457-2

Keywords

Navigation