Skip to main content

Advertisement

Log in

Dental pulp stem cell viability and osteogenic potential assessment of new Mg-phosphate magnetic bioceramic nanoparticles

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, we introduced new magnetic nanoparticles based on iron oxide and Mg-phosphate ceramic (nMgP-Fe) for treatment of bone and pulp-dentin diseases. nMgP-Fe was characterized for the size, magnetism, and degradation properties, and its viability against human dental pulp-derived mesenchymal stem cells (DPSCs) was investigated as a first step to evaluate this material for dental pulp regeneration. The results showed that nMgP-Fe was characterized by its nanosize (10–40 nm), and the formed crystalline phases were farringonite and magnetite. Super-paramagnetic properties of nMgP-Fe were proved (coercivity and residual magnetization values were 20 Oe and 0.06 emu/g, respectively). The dissolution test demonstrated less release of iron ions than magnesium and phosphate ions. DPSCs incubated with nMgP-Fe particles showed a higher proliferation rate and increased osteogenic differentiation potentials compared to the control group. In conclusion, the new fabricated nanosized nMgP-Fe with its supramagnetic properties had biocompatible properties that make them a promising material for bone and pulp-dentin regeneration.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The data that have been used in this work are not available to be shared, as they are confidential data.

References

  1. M. Pečová, L. Zajoncova, K. Polakova, J. Čuda, M. Šafaříková, M. Šebela, I. Šafařík, Biologically active compounds immobilized on magnetic carriers and their utilization in biochemistry and biotechnology. Chemické listy 105 (2011)

  2. H. Vaghari, H. Jafarizadeh-Malmiri, M. Mohammadlou, A. Berenjian, N. Anarjan, N. Jafari, S. Nasiri, Application of magnetic nanoparticles in smart enzyme immobilization. Biotechnol. Lett. 38, 223–233 (2016)

    CAS  Google Scholar 

  3. A. Avasthi, C. Caro, E. Pozo-Torres, M.P. Leal, M.L. García-Martín, Magnetic nanoparticles as MRI contrast agents. Top. Curr. Chem. 378, 40 (2020)

    CAS  Google Scholar 

  4. S.-J. Lee, J.-R. Jeong, S.-C. Shin, J.-C. Kim, Y.-H. Chang, Y.-M. Chang, J.-D. Kim, Nanoparticles of magnetic ferric oxides encapsulated with poly(D, L latide-co-glycolide) and their applications to magnetic resonance imaging contrast agent. J. Magn. Magn. Mater. 272–276, 2432–2433 (2004)

    Google Scholar 

  5. A.J. Giustini, A.A. Petryk, S.M. Cassim, J.A. Tate, I. Baker, P.J. Hoopes, Magnetic nanoparticle hyperthermia in cancer treatment. Nano Life 1, 17–32 (2010). https://doi.org/10.1142/S1793984410000067

    Article  CAS  Google Scholar 

  6. M. Bañobre-López, A. Teijeiro, J. Rivas, Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep. Pract. Oncol. Radiother. 18, 397–400 (2013)

    Google Scholar 

  7. M. Kubovcikova, M. Koneracka, O. Strbak, M. Molcan, V. Zavisova, I. Antal, I. Khmara, D. Lucanska, L. Tomco, M. Barathova, M. Zatovicova, D. Dobrota, S. Pastorekova, P. Kopcansky, Poly-L-lysine designed magnetic nanoparticles for combined hyperthermia, magnetic resonance imaging and cancer cell detection. J. Magn. Magn. Mater. 475, 316–326 (2019)

    CAS  Google Scholar 

  8. M. Ansari, A. Bigham, S.A. Hassanzadeh-Tabrizi, H. Abbastabar Ahangar, Synthesis and characterization of Cu0.3Zn0.5Mg0.2Fe2O4 nanoparticles as a magnetic drug delivery system. J. Magn. Magn. Mater. 439, 67–75 (2017)

    CAS  Google Scholar 

  9. J. Panda, B.S. Satapathy, S. Majumder, R. Sarkar, B. Mukherjee, B. Tudu, Engineered polymeric iron oxide nanoparticles as potential drug carrier for targeted delivery of docetaxel to breast cancer cells. J. Magn. Magn. Mater. 485, 165–173 (2019)

    CAS  Google Scholar 

  10. Y. Ji, S.K. Choi, A.S. Sultan, K. Chuncai, X. Lin, E. Dashtimoghadam, M.A. Melo, M. Weir, H. Xu, L. Tayebi, Z. Nie, D.A. Depireux, R. Masri, Nanomagnetic-mediated drug delivery for the treatment of dental disease. Nanomedicine 14, 919–927 (2018)

    CAS  Google Scholar 

  11. Y. Li, X. Hu, Y. Xia, Y. Ji, J. Ruan, M.D. Weir, X. Lin, Z. Nie, N. Gu, R. Masri, X. Chang, H.H.K. Xu, Novel magnetic nanoparticle-containing adhesive with greater dentin bond strength and antibacterial and remineralizing capabilities. Dent. Mater. 34, 1310–1322 (2018)

    CAS  Google Scholar 

  12. D. Ramimoghadam, S. Bagheri, S.B.A. Hamid, Progress in electrochemical synthesis of magnetic iron oxide nanoparticles. J. Magn. Magn. Mater. 368, 207–229 (2014)

    CAS  Google Scholar 

  13. H. Shokrollahi, A review of the magnetic properties, synthesis methods and applications of maghemite. J. Magn. Magn. Mater. 426, 74–81 (2017)

    CAS  Google Scholar 

  14. M.B. Sathyanarayanan, R. Balachandranath, Y. Genji Srinivasulu, S.K. Kannaiyan, G. Subbiahdoss, The effect of gold and iron-oxide nanoparticles on biofilm-forming pathogens. Int. Scholarly Res. Not. (2013)

  15. I.M. Garcia, A.A. Balhaddad, Y. Lan, A. Simionato, M.S. Ibrahim, M.D. Weir, R. Masri, H.H.K. Xu, F.M. Collares, M.A.S. Melo, Magnetic motion of superparamagnetic iron oxide nanoparticles- loaded dental adhesives: physicochemical/biological properties, and dentin bonding performance studied through the tooth pulpal pressure model. Acta Biomater. (2021)

  16. Y. Li, X. Hu, Y. Xia, Y. Ji, J. Ruan, M.D. Weir, X. Lin, Z. Nie, N. Gu, R. Masri, Novel magnetic nanoparticle-containing adhesive with greater dentin bond strength and antibacterial and remineralizing capabilities. Dent. Mater. 34, 1310–1322 (2018)

    CAS  Google Scholar 

  17. R.A. Frimpong, J.Z. Hilt, Magnetic nanoparticles in biomedicine: synthesis, functionalization and applications. Nanomedicine 5, 1401–1414 (2010)

    CAS  Google Scholar 

  18. Z. Mei, A. Dhanale, A. Gangaharan, D.K. Sardar, L. Tang, Water dispersion of magnetic nanoparticles with selective biofunctionality for enhanced plasmonic biosensing. Talanta 151, 23–29 (2016)

    CAS  Google Scholar 

  19. E.-J. Park, H. Kim, Y. Kim, J. Yi, K. Choi, K. Park, Inflammatory responses may be induced by a single intratracheal instillation of iron nanoparticles in mice. Toxicology 275, 65–71 (2010)

    CAS  Google Scholar 

  20. S.A.M. Abdel-Hameed, M.A. Marzouk, M.M. Farag, Effect of P2O5 and MnO2 on crystallization of magnetic glass ceramics. J. Adv. Res. 5, 543–550 (2014)

    CAS  Google Scholar 

  21. G. Da Li, D.L. Zhou, Y. Lin, T.H. Pan, G.S. Chen, Q.D. Yin, Synthesis and characterization of magnetic bioactive glass-ceramics containing Mg ferrite for hyperthermia. Mater. Sci. Eng. C 30, 148–153 (2010)

    Google Scholar 

  22. M.V. Velasco, M.T. Souza, M.C. Crovace, A.J.A. de Oliveira, E.D. Zanotto, Bioactive magnetic glass-ceramics for cancer treatment. Biomed. Glasses 5, 148–177 (2019)

    Google Scholar 

  23. J.A. Ramos-Guivar, A.C. Krohling, E.O. López, F. Jochen Litterst, E.C. Passamani, Superspinglass behavior of maghemite nanoparticles dispersed in mesoporous silica. J. Magn. Magn. Mater. 485, 142–150 (2019)

    CAS  Google Scholar 

  24. H. Keshavarz, A. Khavandi, S. Alamolhoda, M.R. Naimi-Jamal, Magnetite mesoporous silica nanoparticles embedded in carboxybetaine methacrylate for application in hyperthermia and drug delivery. New J. Chem. 44, 8232–8240 (2020)

    CAS  Google Scholar 

  25. E. Cheraghipour, A.M. Tamaddon, S. Javadpour, I.J. Bruce, PEG conjugated citrate-capped magnetite nanoparticles for biomedical applications. J. Magn. Magn. Mater. 328, 91–95 (2013)

    CAS  Google Scholar 

  26. C.L. Altan, B. Gurten, R. Sadza, E. Yenigul, N.A.J.M. Sommerdijk, S. Bucak, Poly(acrylic acid)-directed synthesis of colloidally stable single domain magnetite nanoparticles via partial oxidation. J. Magn. Magn. Mater. 416, 366–372 (2016)

    CAS  Google Scholar 

  27. E. Illés, M. Szekeres, I.Y. Tóth, Á. Szabó, B. Iván, R. Turcu, L. Vékás, I. Zupkó, G. Jaics, E. Tombácz, Multifunctional PEG-carboxylate copolymer coated superparamagnetic iron oxide nanoparticles for biomedical application. J. Magn. Magn. Mater. 451, 710–720 (2018)

    Google Scholar 

  28. T. Iwasaki, R. Nakatsuka, K. Murase, H. Takata, H. Nakamura, S. Watano, Simple and rapid synthesis of magnetite/hydroxyapatite composites for hyperthermia treatments via a mechanochemical route. Int. J. Mol. Sci. 14, 9365–9378 (2013)

    Google Scholar 

  29. G. Bharath, K. Rambabu, A. Hai, S. Anwer, F. Banat, N. Ponpandian, Synthesis of one-dimensional magnetite hydroxyapatite nanorods on reduced graphene oxide sheets for selective separation and controlled delivery of hemoglobin. Appl. Surf. Sci. 501, 144215 (2020)

    CAS  Google Scholar 

  30. H. Kawahara, Bioceramics for hard tissue replacements. Clin. Mater. 2, 181–206 (1987)

    Google Scholar 

  31. X. Pan, J. Huang, K. Zhang, Z. Pei, Z. Ding, Y. Liang, Z. Gu, G. Li, H. Xie, Iron-doped brushite bone cement scaffold with enhanced osteoconductivity and antimicrobial properties for jaw regeneration. Ceram. Int. 47, 25810–25820 (2021)

    CAS  Google Scholar 

  32. E.I. Ruskin, P.P. Coomar, P. Sikder, S.B. Bhaduri, Magnetic calcium phosphate cement for hyperthermia treatment of bone tumors. Materials 13, 3501 (2020)

    CAS  Google Scholar 

  33. S. Sakka, J. Bouaziz, F.B. Ayed, Advances in biomaterials science and biomedical applications, Chapter Book: Mechanical Properties of Biomaterials Based on Calcium Phosphates and Bioinert Oxides for Applications in Biomedicine, InTech Croatia (2013), pp. 23–50

  34. A.K. Sarkar, Phosphate cement-based fast-setting binders. Am. Ceram. Soc. Bull. 69, 234–238 (1990)

    CAS  Google Scholar 

  35. S. Xing, C. Wu, Preparation of Magnesium Phosphate Cement and Application in Concrete Repair, MATEC Web of Conferences, EDP Sciences (2018) ,p. 02007.

  36. A.S. Wagh, C. Primus, Method and product for phosphosilicate slurry for use in dentistry and related bone cements, Google Patents (2006).

  37. S. Meininger, C. Blum, M. Schamel, J.E. Barralet, A. Ignatius, U. Gbureck, Phytic acid as alternative setting retarder enhanced biological performance of dicalcium phosphate cement in vitro. Sci. Rep. 7, 558 (2017)

    Google Scholar 

  38. C. Moseke, V. Saratsis, U. Gbureck, Injectability and mechanical properties of magnesium phosphate cements. J. Mater. Sci. Mater. Med. 22, 2591–2598 (2011)

    CAS  Google Scholar 

  39. F. Tamimi, D. Le Nihouannen, D.C. Bassett, S. Ibasco, U. Gbureck, J. Knowles, A. Wright, A. Flynn, S.V. Komarova, J.E. Barralet, Biocompatibility of magnesium phosphate minerals and their stability under physiological conditions. Acta Biomater. 7, 2678–2685 (2011)

    CAS  Google Scholar 

  40. Y. Yu, J. Wang, C. Liu, B. Zhang, H. Chen, H. Guo, G. Zhong, W. Qu, S. Jiang, H. Huang, Evaluation of inherent toxicology and biocompatibility of magnesium phosphate bone cement. Colloids Surf. B 76, 496–504 (2010)

    CAS  Google Scholar 

  41. J. Lee, M.M. Farag, E.K. Park, J. Lim, H.-S. Yun, A simultaneous process of 3D magnesium phosphate scaffold fabrication and bioactive substance loading for hard tissue regeneration. Mater. Sci. Eng. C 36, 252–260 (2014)

    CAS  Google Scholar 

  42. M.M. Farag, M.M. Ahmed, N.M. Abdallah, W. Swieszkowski, A.M. Shehabeldine, The combined antibacterial and anticancer properties of nano Ce-containing Mg-phosphate ceramic. Life Sci. 257, 117999 (2020)

    CAS  Google Scholar 

  43. M. Waselau, V.F. Samii, S.E. Weisbrode, A.S. Litsky, A.L. Bertone, Effects of a magnesium adhesive cement on bone stability and healing following a metatarsal osteotomy in horses. Am. J. Vet. Res. 68, 370–378 (2007)

    CAS  Google Scholar 

  44. F. Wu, J. Wei, H. Guo, F. Chen, H. Hong, C. Liu, Self-setting bioactive calcium–magnesium phosphate cement with high strength and degradability for bone regeneration. Acta Biomater. 4, 1873–1884 (2008)

    CAS  Google Scholar 

  45. B.-M. Seo, M. Miura, S. Gronthos, P.M. Bartold, S. Batouli, J. Brahim, M. Young, P.G. Robey, C.Y. Wang, S. Shi, Investigation of multipotent postnatal stem cells from human periodontal ligament. The Lancet 364, 149–155 (2004)

    CAS  Google Scholar 

  46. A. Pisciotta, M. Riccio, G. Carnevale, F. Beretti, L. Gibellini, T. Maraldi, G.M. Cavallini, A. Ferrari, G. Bruzzesi, A. De Pol, Human serum promotes osteogenic differentiation of human dental pulp stem cells in vitro and in vivo. PLoS ONE 7, e50542 (2012)

    CAS  Google Scholar 

  47. A. Giuliani, A. Manescu, M. Langer, F. Rustichelli, V. Desiderio, F. Paino, A. De Rosa, L. Laino, R. d’Aquino, V. Tirino, Three years after transplants in human mandibles, histological and in-line holotomography revealed that stem cells regenerated a compact rather than a spongy bone: biological and clinical implications. Stem Cells Transl. Med. 2, 316–324 (2013)

    CAS  Google Scholar 

  48. O. Veiseh, J.W. Gunn, M. Zhang, Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev. 62, 284–304 (2010)

    CAS  Google Scholar 

  49. H. Zhou, T.J. Luchini, S.B. Bhaduri, Microwave assisted synthesis of amorphous magnesium phosphate nanospheres. J. Mater. Sci. Mater. Med. 23, 2831–2837 (2012)

    CAS  Google Scholar 

  50. A. Sinha, S. Nayar, A. Agrawal, D. Bhattacharyya, P. Ramachandrarao, Synthesis of nanosized and microporous precipitated hydroxyapatite in synthetic polymers and biopolymers. J. Am. Ceram. Soc. 86, 357–359 (2003)

    CAS  Google Scholar 

  51. M. Ishii, M. Nakahira, T. Yamanaka, Infrared absorption spectra and cation distributions in (Mn, Fe)3O4. Solid State Commun. 11, 209–212 (1972)

    CAS  Google Scholar 

  52. H. Namduri, S. Nasrazadani, Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry. Corros. Sci. 50, 2493–2497 (2008)

    CAS  Google Scholar 

  53. G. Perumal, P.M. Sivakumar, A.M. Nandkumar, M. Doble, Synthesis of magnesium phosphate nanoflakes and its PCL composite electrospun nanofiber scaffolds for bone tissue regeneration. Mater. Sci. Eng. C 109, 110527 (2020)

    CAS  Google Scholar 

  54. Y.-W. Jun, Y.-M. Huh, J.-S. Choi, J.-H. Lee, H.-T. Song, S. Kim, S. Kim, S. Yoon, K.-S. Kim, J.-S. Shin, Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc. 127, 5732–5733 (2005)

    CAS  Google Scholar 

  55. D.L. Huber, Synthesis, properties, and applications of iron nanoparticles. Small 1, 482–501 (2005)

    CAS  Google Scholar 

  56. F. Ozel, H. Kockar, Growth and characterizations of magnetic nanoparticles under hydrothermal conditions: reaction time and temperature. J. Magn. Magn. Mater. 373, 213–216 (2015)

    CAS  Google Scholar 

  57. R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (Wiley, New York, 2003)

    Google Scholar 

  58. M. Fang, V. Ström, R.T. Olsson, L. Belova, K.V. Rao, Particle size and magnetic properties dependence on growth temperature for rapid mixed co-precipitated magnetite nanoparticles. Nanotechnology 23, 145601 (2012)

    Google Scholar 

  59. G. Racz, R. Soper, Solubility of dimagnesium phosphate trihydrate and trimagnesium phosphate. Can. J. Soil Sci. 48, 265–269 (1968)

    CAS  Google Scholar 

  60. J. Anastassopoulou, T. Theophanides, The Role of Metal Ions in Biological Systems and Medicine, Bioinorganic Chemistry (Springer, New York, 1995), pp. 209–218

    Google Scholar 

  61. T. Michigami, M. Kawai, M. Yamazaki, K. Ozono, Phosphate as a signaling molecule and its sensing mechanism. Physiol. Rev. 98, 2317–2348 (2018)

    CAS  Google Scholar 

  62. E.M. Múzquiz-Ramos, D. Cortés-Hernández, J. Escobedo-Bocardo, A. Zugasti-Cruz, X. Ramírez-Gómez, J. Osuna-Alarcón, In vitro and in vivo biocompatibility of apatite-coated magnetite nanoparticles for cancer therapy. J. Mater. Sci. Mater. Med. 24, 1035–1041 (2013)

    Google Scholar 

  63. M.S. Laranjeira, A. Moço, J. Ferreira, S. Coimbra, E. Costa, A. Santos-Silva, P.J. Ferreira, F.J. Monteiro, Different hydroxyapatite magnetic nanoparticles for medical imaging: Its effects on hemostatic, hemolytic activity and cellular cytotoxicity. Colloids Surf. B 146, 363–374 (2016)

    CAS  Google Scholar 

  64. X. Guo, Y. Long, W. Li, H. Dai, Osteogenic effects of magnesium substitution in nano-structured β-tricalcium phosphate produced by microwave synthesis. J. Mater. Sci. 54, 11197–11212 (2019)

    CAS  Google Scholar 

  65. C. Liu, X. Fu, H. Pan, P. Wan, L. Wang, L. Tan, K. Wang, Y. Zhao, K. Yang, P.K. Chu, Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects. Sci. Rep. 6, 1–17 (2016)

    Google Scholar 

  66. H. Windhagen, K. Radtke, A. Weizbauer, J. Diekmann, Y. Noll, U. Kreimeyer, R. Schavan, C. Stukenborg-Colsman, H. Waizy, Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study. Biomed. Eng. 12, 1–10 (2013)

    Google Scholar 

  67. R. Zhang, Y. Lu, L. Ye, B. Yuan, S. Yu, C. Qin, Y. Xie, T. Gao, M.K. Drezner, L.F. Bonewald, Unique roles of phosphorus in endochondral bone formation and osteocyte maturation. J. Bone Miner. Res. 26, 1047–1056 (2011)

    CAS  Google Scholar 

  68. A. Angelucci, C. Festuccia, G.L. Gravina, P. Muzi, L. Bonghi, C. Vicentini, M. Bologna, Osteopontin enhances the cell proliferation induced by the epidermal growth factor in human prostate cancer cells. Prostate 59, 157–166 (2004)

    CAS  Google Scholar 

  69. Z. Wang, Y. Ma, J. Wei, X. Chen, L. Cao, W. Weng, Q. Li, H. Guo, J. Su, Effects of sintering temperature on surface morphology/microstructure, in vitro degradability, mineralization and osteoblast response to magnesium phosphate as biomedical material. Sci. Rep. 7, 1–11 (2017)

    Google Scholar 

  70. J.M. Díaz-Tocados, C. Herencia, J.M. Martínez-Moreno, A.M. de Oca, M.E. Rodríguez-Ortiz, N. Vergara, A. Blanco, S. Steppan, Y. Almadén, M. Rodríguez, Magnesium chloride promotes osteogenesis through notch signaling activation and expansion of mesenchymal stem cells. Sci. Rep. 7, 1–12 (2017)

    Google Scholar 

  71. A. Orimoto, S. Kyakumoto, T. Eitsuka, K. Nakagawa, T. Kiyono, T. Fukuda, Efficient immortalization of human dental pulp stem cells with expression of cell cycle regulators with the intact chromosomal condition. PLoS ONE 15, e0229996 (2020)

    CAS  Google Scholar 

  72. S. Naz, F.R. Khan, R.R. Zohra, S.S. Lakhundi, M.S. Khan, N. Mohammed, T. Ahmad, Isolation and culture of dental pulp stem cells from permanent and deciduous teeth. Pak. J. Med. Sci. 35, 997 (2019)

    Google Scholar 

  73. Y. Hadaegh, M. Niknam, A. Attar, M.K. Maharlooei, M.S. Tavangar, A.M. Aarabi, A. Monabati, Characterization of stem cells from the pulp of unerupted third molar tooth. Indian J. Dent. Res. 25, 14 (2014)

    Google Scholar 

  74. I. Kalaszczynska, S. Ruminski, A.E. Platek, I. Bissenik, P. Zakrzewski, M. Noszczyk, M. Lewandowska-Szumiel, Substantial differences between human and ovine mesenchymal stem cells in response to osteogenic media: how to explain and how to manage? BioRes. Open Access 2, 356–363 (2013)

    CAS  Google Scholar 

  75. S. Zhang, H. Geng, H. Xie, Q. Wu, X. Ma, J. Zhou, F. Chen, The heterogeneity of cell subtypes from a primary culture of human amniotic fluid. Cell. Mol. Biol. Lett. 15, 424–439 (2010)

    CAS  Google Scholar 

  76. M. Zavatti, L. Bertoni, T. Maraldi, E. Resca, F. Beretti, M. Guida, G.B. La Sala, A. De Pol, Critical-size bone defect repair using amniotic fluid stem cell/collagen constructs: effect of oral ferutinin treatment in rats. Life Sci. 121, 174–183 (2015)

    CAS  Google Scholar 

  77. G. Fernandez de Grado, L. Keller, Y. Idoux-Gillet, Q. Wagner, A.-M. Musset, N. Benkirane-Jessel, F. Bornert, D. Offner, Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J. Tissue Eng. 9, 2041731418776819 (2018)

    Google Scholar 

  78. H. Böttcher, K. Eisbrenner, S. Fritz, G. Kindermann, F. Kraxner, I. McCallum, M. Obersteiner, An assessment of monitoring requirements and costs of reduced emissions from deforestation and degradation. Carbon Balance Manag. 4, 1–14 (2009)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Research Centre, Egypt, and the Oral Biology Department, Faculty of Dentistry, Cairo University, Egypt for the use of their facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad M. Farag or Zainab M. Al-Rashidy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farag, M.M., Beherei, H., Al-Rashidy, Z.M. et al. Dental pulp stem cell viability and osteogenic potential assessment of new Mg-phosphate magnetic bioceramic nanoparticles. Journal of Materials Research 37, 595–607 (2022). https://doi.org/10.1557/s43578-021-00454-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00454-5

Keywords

Navigation