Skip to main content
Log in

Interfacial engineering of mp-TiO2/CH3NH3PbI3 with Al2O3: Effect of different phases of alumina on performance and stability of perovskite solar cells

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this paper, α, γ and amorphous Al2O3 were deposited on mesoporous TiO2 by spin coating technique. Among the phases of alumina used for coating the TiO2 layer, photo anode electrode prepared by γ-Al2O3 showed better photovoltaic properties than those covered by α and amorph-Al2O3. The perovskite solar cells which constructed by surface passivated TiO2 films showed worse performance and stability than the unpassivated devices. Also, using the amorphous phase of alumina as substrate of perovskite in the structure of perovskite solar cells leads to lower solar cell stability (remain about 49% of efficiency after 70 days) compared to using α and γ-Al2O3 as substrate of perovskite (remain about 68% of efficiency after 70 days). Our findings provide vital understanding to improve the performance and stability of TiO2- and Al2O3-based perovskite solar cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. M. Kot, C. Das, Z. Wang, K. Henkel, Z. Rouissi, K. Wojciechowski, H.J. Snaith, D. Schmeißer, Room-Temperature atomic layer deposition of Al2O3: impact on efficiency, stability and surface properties in perovskite solar cells. Chemsuschem 9, 3401–3406 (2016)

    Article  CAS  Google Scholar 

  2. C. Zhao, C.Z. Zhao, S. Taylor, P.R. Chalker, Review on non-volatile memory with high-k dielectrics: flash for generation beyond 32 nm. Materials 7, 5117–5145 (2014)

    Article  Google Scholar 

  3. P. Ye, B. Yang, K. Ng, J. Bude, G. Wilk, S. Halder, J. Hwang, GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric. Appl. Phys. Lett. 86, 063501 (2005)

    Article  Google Scholar 

  4. X.J. Liu, L. Zhu, M.Y. Gao, X.F. Li, Z.Y. Cao, H.F. Zhai, A.D. Li, D. Wu, Nonvolatile memory capacitors based on Al2O3 tunneling and HfO2 blocking layers with charge storage in atomic-layer-deposited Pt nanocrystals. Appl. Surf. Sci. 289, 332–337 (2014)

    Article  CAS  Google Scholar 

  5. C.S. Lee, W.C. Hsu, H.Y. Liu, Y.C. Chen, Al2O3-dielectric In 0.18 Al 0.82 N/AlN/GaN/Si metal-oxide-semiconductor heterostructure field-effect transistors with backside substrate metal-trench structure. IEEE J. Electron Devices Soc. 6, 68–73 (2017)

    Article  Google Scholar 

  6. S. Basu, P.K. Singh, S.K. Lin, P.W. Sze, Y.H. Wang, Effects of short-term DC-bias-induced stress on n-GaN/AlGaN/GaN MOSHEMTs with liquid-phase-deposited Al2O3 as a gate dielectric. IEEE Trans. Electron Devices 57, 2978–2987 (2010)

    Article  CAS  Google Scholar 

  7. I. Levin, D. Brandon, Metastable alumina polymorphs: crystal structures and transition sequences. J. Am. Ceram. Soc. 81, 1995–2012 (1998)

    Article  CAS  Google Scholar 

  8. A.S. Jbara, Z. Othaman, M. Saeed, Structural, morphological and optical investigations of θ-Al2O3 ultrafine powder. J. Alloys Compd. 718, 1–6 (2017)

    Article  CAS  Google Scholar 

  9. M. Vasheghani, E. Marzbanrad, C. Zamani, M. Aminy, B. Raissi, T. Ebadzadeh, H. Barzegar-Bafrooei, Effect of Al2O3 phases on the enhancement of thermal conductivity and viscosity of nanofluids in engine oil. Heat Mass Transfer 47, 1401–1405 (2011)

    Article  CAS  Google Scholar 

  10. N. Huda, M.A. Whitney, M.H. Razmpoosh, A.P. Gerlich, J.Z. Wen, S.F. Corbin, How phase (α and γ) and porosity affect specific heat capacity and thermal conductivity of thermal storage alumina. J. Am. Ceram. Soc. 104, 1436–1447 (2021)

    Article  CAS  Google Scholar 

  11. A. Boumaza, L. Favaro, J. Lédion, G. Sattonnay, J.B. Brubach, P. Berthet, A.M. Huntz, P. Roy, R. Tétot, Transition alumina phases induced by heat treatment of boehmite: an X-ray diffraction and infrared spectroscopy study. J. Solid State Chem. 182, 1171–1176 (2009)

    Article  CAS  Google Scholar 

  12. D.L. Hoang, S.H. Chan, O.L. Ding, Kinetic and modelling study of methane steam reforming over sulfide nickel catalyst on a gamma alumina support. Chem. Eng. J. 112, 1–11 (2005)

    Article  CAS  Google Scholar 

  13. Y. Rozita, R. Brydson, A.J. Scott, An investigation of commercial gamma-Al2O3 nanoparticles. J. Phys. 241, 012096 (2010)

    Google Scholar 

  14. S. Toyoda, T. Shinohara, H. Kumigashira, M. Oshima, Y. Kato, Significant increase in conduction band discontinuity due to solid phase epitaxy of Al2O3 gate insulator films on GaN semiconductor. Appl. Phys. Lett. 101, 231607 (2012)

    Article  Google Scholar 

  15. R.H. French, Electronic band structure of Al2O3, with comparison to Alon and AIN. J. Am. Ceram. Soc. 73, 477–489 (1990)

    Article  CAS  Google Scholar 

  16. B. Ealet, M. Elyakhloufi, E. Gillet, M. Ricci, Electronic and crystallographic structure of γ-alumina thin films. Thin Solid Films 250, 92–100 (1994)

    Article  CAS  Google Scholar 

  17. M. Aguilar-Frutis, M. Garcia, C. Falcony, Optical and electrical properties of aluminum oxide films deposited by spray pyrolysis. Appl. Phys. Lett. 72, 1700–1702 (1998)

    Article  CAS  Google Scholar 

  18. V. Afanas’ev, M. Houssa, A. Stesmans, M. Heyns, Band alignments in metal–oxide–silicon structures with atomic-layer deposited Al2O3 and ZrO2. J. Appl. Phys. 91, 3079–3084 (2002).

  19. H. Momida, T. Hamada, Y. Takagi, T. Yamamoto, T. Uda, T. Ohno, Theoretical study on dielectric response of amorphous alumina. Phys. Rev. B 73, 054108 (2006)

    Article  Google Scholar 

  20. E.O. Filatova, A.S. Konashuk, Interpretation of the changing the band gap of Al2O3 depending on its crystalline form: connection with different local symmetries. J. Phys. Chem. C 119, 20755–20761 (2015)

    Article  CAS  Google Scholar 

  21. V. Afanas’ev, M. Houssa, A. Stesmans, C. Merckling, T. Schram, J. Kittl, Influence of Al2O3 crystallization on band offsets at interfaces with Si and TiNx. Appl. Phys. Lett. 99, 072103 (2011)

    Article  Google Scholar 

  22. R. Prins, Location of the spinel vacancies in γ-Al2O3. Angew. Chem. Int. Ed. 58, 15548–15552 (2019)

    Article  CAS  Google Scholar 

  23. K. Shirasuka, H. Yanagida, G. Yamaguchi, The preparation of η-alumina and its structure. J. Ceram. Assoc. Jpn. 84, 610–613 (1976)

    Article  CAS  Google Scholar 

  24. K. Tsuruta, E. Tochigi, Y. Kezuka, K. Takata, N. Shibata, A. Nakamura, Y. Ikuhara, Core structure and dissociation energetics of basal edge dislocation in α-Al2O3: a combined atomistic simulation and transmission electron microscopy analysis. Acta Mater. 65, 76–84 (2014)

    Article  CAS  Google Scholar 

  25. P.H. Kien, P.M. An, G.T.T. Trang, P.K. Hung, The structural transition under compression and correlation between structural and dynamical heterogeneity for liquid Al2O3. Int. J. Mod. Phys. B 33, 1950380 (2019)

    Article  CAS  Google Scholar 

  26. X. Luo, J. Ding, J. Wang, J. Zhang, Electron transport enhancement in perovskite solar cell via the polarized BaTiO3 thin film. J. Mater. Res. 35, 2158–2165 (2020)

    Article  CAS  Google Scholar 

  27. H. Chen, Sh. Yang, Stabilizing and scaling up carbon-based perovskite solar cells. J. Mater. Res. 32, 18117–18124 (2017)

    Article  Google Scholar 

  28. R. Qiao, L. Zuo, Self-assembly monolayers boosting organic–inorganic halide perovskite solar cell performance. J. Mater. Res. 33, 3011–3020 (2018)

    Article  Google Scholar 

  29. N.K. Tailor, M.A. Jalebi, V. Gupta, H. Hu, M.I. Dar, G. Li, S. Satapathi, Recent progress in morphology optimization in perovskite solar cell. J. Mater. Chem. A 8, 21356–21386 (2020)

    Article  CAS  Google Scholar 

  30. D. Zheng, Ch. Tong, T. Zhu, Y. Rong, Th. Pauporté, Effects of 5-ammonium valeric acid iodide as additive on methyl ammonium lead iodide perovskite solar cells. Nanomaterials 10, 2512 (2020)

    Article  CAS  Google Scholar 

  31. N.J. Zadeh, M.B. Zarandi, M.R. Nateghi, Optical properties of the perovskite films deposited on meso-porous TiO2 by one step and hot casting techniques. Thin Solid Films 671, 139–146 (2019)

    Article  CAS  Google Scholar 

  32. S.D. Stranks, G.E. Eperon, G. Grancini, Ch. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013)

    Article  CAS  Google Scholar 

  33. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012)

    Article  CAS  Google Scholar 

  34. M. He, J. Liang, Zh. Zhang, Y. Qiu, Z. Deng, H. Xu, J. Wang, Y. Yang, Zh. Chen, Ch. Ch. Chen, Compositional optimization of a 2D–3D heterojunction interface for 22.6% efficient and stable planar perovskite solar cells. J. Mater. Chem. A 8, 25831–25841 (2020).

  35. W.S. Yang, J.H. Noh, N.J. Jeon, YCh. Kim, S. Ryu, J. Seo, S. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015)

    Article  CAS  Google Scholar 

  36. H.J. Snaith, A. Abate, J.M. Ball, G.E. Eperon, T. Leijtens, N.K. Noel, S.D. Stranks, J.T.W. Wang, K. Wojciechowski, W. Zhang, Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014)

    Article  CAS  Google Scholar 

  37. W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, Y. Yan, Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. 137, 6730–6733 (2015)

    Article  CAS  Google Scholar 

  38. G.E. Eperon, G.M. Paternò, R.J. Sutton, A. Zampetti, A.A. Haghighirad, F. Cacialli, H.J. Snaith, Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3, 19688–19695 (2015)

    Article  CAS  Google Scholar 

  39. C.A.R. Perini, A.R. Pininti, S. Martani, P. Topolovsek, A. Perego, D. Cortecchia, A. Petrozza, M. Caironi, Humidity-robust scalable metal halide perovskite film deposition for photovoltaic applications. J. Mater. Chem. A 8, 25283–25289 (2020)

    Article  CAS  Google Scholar 

  40. D. Wang, Q. Chen, H. Mo, J. Jacobs, A. Thomas, Zh. Liu, A bilayer TiO2/Al2O3 as the mesoporous scaffold for enhanced air stability of ambient-processed perovskite solar cells. Mater. Adv. 1, 2057–2067 (2020)

    Article  CAS  Google Scholar 

  41. T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee, H.J. Snaith, Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4, 2885 (2013)

    Article  Google Scholar 

  42. Y. Rong, L. Liu, A. Mei, X. Li, H. Han, Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells. Adv. Energy Mater. 5, 1501066 (2015)

    Article  Google Scholar 

  43. D. Wei, H. Huang, P. Cui, J. Ji, Sh. Dou, E. Jia, S. Sajid, M. Cui, L. Chu, Y. Li, B. Jiang, M. Li, Moisture-tolerant supermolecule for the stability enhancement of organic–inorganic perovskite solar cells in ambient air. Nanoscale 11, 1228–1235 (2019)

    Article  CAS  Google Scholar 

  44. I.M. Asuo, D. Gedamu, N.Y. Doumon, I. Ka, A. Pignolet, S.G. Cloutier, R. Nechache, Correction: ambient condition-processing strategy for improved air-stability and efficiency in mixed-cation perovskite solar cells. Mater. Adv. 1, 2136–2136 (2020)

    Article  Google Scholar 

  45. High-humidity processed perovskite solar cells, M. F. Mohamad Noh, N. A. Arzaee, I. N. N. Mumthas, N. A. Mohamed, S. N. F. Mohd Nasir, J. Safaei, A. R. bin Mohd Yusoff, M. Kh. Nazeeruddin, M. A. M. Teridi. J. Mater. Chem. A 8, 10481–10518 (2020)

    Google Scholar 

  46. Q. Walia, F. J. Iftikhar, M. E. Khan, A. Ullah, Y. Iqbal, R. Jose: Advances in stability of perovskite solar cells. Org. Electron. 78, 105590 (2020).

  47. Y. Numata, Y. Sanehira, T. Miyasaka, Impacts of heterogeneous TiO2 and Al2O3 composite mesoporous scaffold on formamidinium lead trihalide perovskite solar cells. ACS Appl. Mater. Interfaces 8, 4608–4615 (2016)

    Article  CAS  Google Scholar 

  48. J.A. Christians, P.A.M. Herrera, P.V. Kamat, Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 137, 1530–1538 (2015)

    Article  CAS  Google Scholar 

  49. J. Yang, B.D. Siempelkamp, D. Liu, T.L. Kelly, Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 9, 1955–1963 (2015)

    Article  CAS  Google Scholar 

  50. A.M.A. Leguy, Y. Hu, M. Campoy-Quiles, M.I. Alonso, O.J. Weber, P. Azarhoosh, M. van Schilfgaarde, M.T. Weller, T. Bein, J. Nelson, P. Docampo, P.R.F. Barnes, Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mater. 27, 3397–3407 (2015)

    Article  CAS  Google Scholar 

  51. J. Yang, K.M. Fransishyn, T.L. Kelly, Comparing the effect of mesoporous and planar metal oxides on the stability of methylammonium lead iodide thin films. Chem. Mater. 28, 7344–7352 (2016)

    Article  CAS  Google Scholar 

  52. Sh. Shao, M.A. Loi, The role of the interfaces in perovskite solar cells. Adv. Mater. Interfaces 7, 1901469 (2019)

    Article  Google Scholar 

  53. J. Ali, Y. Li, P. Gao, T. Hao, J. Song, Q. Zhang, L. Zhu, J. Wang, W. Feng, H. Hu, F. Liu, Interfacial and structural modifications in perovskite solar cells. Nanoscale 12, 5719–5745 (2020)

    Article  CAS  Google Scholar 

  54. J.K. Wang, H.Y. Hou, Y.Q. Li, J.X. Tang, Recent advances in interface engineering of all-inorganic perovskite solar cells. Nanoscale 12, 17149–17164 (2020)

    Article  CAS  Google Scholar 

  55. A. Mahapatra, D. Prochowicz, M.M. Tavakoli, S. Trivedi, P. Kumar, P. Yadav, A review of aspects of additive engineering in perovskite solar cells. J. Mater. Chem. A 8, 27–54 (2020)

    Article  CAS  Google Scholar 

  56. Y. Chen, J. Shi, X. Li, S. Li, X. Lv, X. Sun, Y. Zh. Zheng, X. Tao, A universal strategy combining interface and grain boundary engineering for negligible hysteresis and high efficiency (21.41%) planar perovskite solar cells. J. Mater. Chem. A 8, 6349–6359 (2020).

  57. J.P.C. Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T.J. Jacobsson, A.R.S. Kandada, Sh.M. Zakeeruddin, A. Petrozza, A. Abate, MKh. Nazeeruddin, M. Grätzel, A. Hagfeldt, Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 8, 2928–2934 (2015)

    Article  Google Scholar 

  58. G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, TCh. Sum, Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013)

    Article  CAS  Google Scholar 

  59. H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Photovoltaics. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

  60. S. van Reenen, M. Kemerink, H.J. Snaith, Modeling anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 6, 3808–3814 (2015)

    Article  Google Scholar 

  61. Zh. Wan, Interface passivation strategy improves the efficiency and stability of organic inorganic hybrid metal halide perovskite solar cells. J. Mater. Res. 35, 2166–2189 (2020)

    Article  CAS  Google Scholar 

  62. W. Li, W. Zhang, S.V. Reenen, R.J. Sutton, J. Fan, A.A. Haghighirad, M.B. Johnston, L. Wang, H.J. Snaith, Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energy Environ. Sci. 9, 490–498 (2016)

    Article  CAS  Google Scholar 

  63. Y. Wang, T. Mahmoudi, W.Y. Rho, H.Y. Yang, S. Seo, K.S. Bhat, R. Ahmad, Y.B. Hahn, Ambient-air-solution-processed efficient and highly stable perovskite solar cells based on CH3NH3PbI3−xClx-NiO composite with Al2O3/NiO interfacial engineering. Nano Energy 40, 408–417 (2017)

    Article  CAS  Google Scholar 

  64. A. Guerrero, J. You, C. Aranda, Y.S. Kang, G.G. Belmonte, H. Zhou, J. Bisquert, Y. Yang, Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano 10, 218–224 (2016)

    Article  CAS  Google Scholar 

  65. H.S. Kim, J.Y. Seo, N.G. Park, Material and device stability in perovskite solar cells. Chemsuschem 9, 2528 (2016)

    Article  CAS  Google Scholar 

  66. N. Ahn, K. Kwak, M.S. Jang, H. Yoon, B.Y. Lee, J.K. Lee, P.V. Pikhitsa, J. Byun, M. Choi, Trapped charge-driven degradation of perovskite solar cells. Nat. Commun. 7, 13422 (2016)

    Article  CAS  Google Scholar 

  67. M.L. Cantú, Perovskite solar cells: stability lies at interfaces. Nat. Energy 2, 17115 (2017)

    Article  Google Scholar 

  68. G. Grancini, C.R. Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F.D. Angelis, M. Gräetzel, M.K. Nazeeruddin, One-year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 15684 (2017)

    Article  CAS  Google Scholar 

  69. K. Domanski, J.P. Correa-Baena, N. Mine, M.K. Nazeeruddin, A. Abate, M. Saliba, W. Tress, A. Hagfeldt, M. Grätzel, Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10, 6306–6314 (2016)

    Article  CAS  Google Scholar 

  70. Y. Lee, S. Paek, K. T. Cho, E. Oveisi, P. Gao, S. Lee, J. S. Park, Y. Zhang, R. H. Baker, A. M. Asiri, M. Khaja Nazeeruddin, Enhanced charge collection with passivation of the tin oxide layer in planar perovskite solar cells. J. Mater. Chem. A 5, 12729–12734 (2017).

  71. Y. Wang, T. Mahmoudi, H.Y. Yang, K.S. Bhat, J.Y. Yoo, Y.B. Hahn, Fully-ambient-processed mesoscopic semitransparent perovskite solar cells by islands-structure-MAPbI3-xClx-NiO composite and Al2O3/NiO interface engineering. Nano Energy 49, 59–66 (2018)

    Article  CAS  Google Scholar 

  72. G. Niu, W. Li, F. Meng, L. Wang, H. Dong, Y. Qiu, Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2, 705–710 (2014)

    Article  CAS  Google Scholar 

  73. D. Koushik, W.J.H. Verhees, Y. Kuang, S. Veenstra, D. Zhang, M.A. Verheijen, M. Creatore, R.E.I. Schropp, High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture. Energy Environ. Sci. 10, 91–100 (2017)

    Article  CAS  Google Scholar 

  74. D. Koushik, L. Hazendonk, V. Zardetto, V. Vandalon, M.A. Verheijen, W.M.M. Kessels, M. Creatore, Chemical analysis of the interface between hybrid organic-inorganic perovskite and atomic layer deposited Al2O3. ACS Appl. Mater. Interfaces 11, 5526–5535 (2019)

    Article  CAS  Google Scholar 

  75. H.S. Kim, Ch.R. Lee, J.H. Im, K.B. Lee, Th. Moehl, A. Marchioro, S.J. Moon, R.H. Baker, J.H. Yum, J.E. Moser, M. Grätzel, N.G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012)

    Article  Google Scholar 

  76. S.K. Pathak, A. Abate, P. Ruckdeschel, B. Roose, K.C. Gödel, Y. Vaynzof, A. Santhala, S.I. Watanabe, D.J. Hollman, N. Noel, A. Sepe, U. Wiesner, R. Friend, H.J. Snaith, U. Steiner, Performance and stability enhancement of dye-sensitized and perovskite solar cells by Al doping of TiO2. Adv. Funct. Mater. 24, 6046–6055 (2014)

    Article  CAS  Google Scholar 

  77. H. Si, Q. Liao, Zh. Zhang, Y. Li, X. Yang, G. Zhang, Zh. Kang, Y. Zhang, An innovative design of perovskite solar cells with Al2O3 inserting at ZnO/perovskite interface for improving the performance and stability. Nano Energy 22, 223–231 (2016)

    Article  CAS  Google Scholar 

  78. W. Chen, Y. Wu, J. Liu, Ch. Qin, X. Yang, A. Islam, Y.B. Cheng, L. Han, Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells. Energy Environ. Sci. 8, 629–640 (2015)

    Article  CAS  Google Scholar 

  79. Zh. Meng, D. Guo, J. Yu, K. Fan, Investigation of Al2O3 and ZrO2 spacer layers for fully printable and hole-conductor-free mesoscopic perovskite solar cells. Appl. Surf. Sci. 430, 632–638 (2018)

    Article  CAS  Google Scholar 

  80. J. Zhang, A. Hultqvist, T. Zhang, L. Jiang, Ch. Ruan, L. Yang, Y. Cheng, M. Edoff, E.M.J. Johansson, Al2O3 underlayer prepared by atomic layer deposition for efficient perovskite solar cells. Chemsuschem 10, 3810–3817 (2017)

    Article  CAS  Google Scholar 

  81. S.D. Ponja, I.P. Parkin, C.J. Carmalt, Synthesis and material characterization of amorphous and crystalline (α) Al2O3 via aerosol assisted chemical vapour deposition. RSC Adv. 6, 102956–102960 (2016)

    Article  CAS  Google Scholar 

  82. L. Samain, A. Jaworski, M. Edén, D.M. Ladd, D.K. Seo, F.J.G. Garcia, U. Häussermann, Structural analysis of highly porous γ-Al2O3. J. Solid State Chem. 217, 1–8 (2014)

    Article  CAS  Google Scholar 

  83. Y. Kanemitsu, Luminescence spectroscopy of lead-halide perovskites: materials properties and application as photovoltaic devices. J. Mater. Chem. C 5, 3427–3437 (2017)

    Article  CAS  Google Scholar 

  84. A. Dymshits, A. Henning, G. Segev, Y. Rosenwaks, L. Etgar, The electronic structure of metal oxide/organo metal halide perovskite junctions in perovskite based solar cells. Sci. Rep. 5, 8704 (2015)

    Article  CAS  Google Scholar 

  85. O.A. Dicks, A.L. Shluger, Theoretical modeling of charge trapping in crystalline and amorphous Al2O3. J. Phys. 29, 314005 (2017)

    Google Scholar 

  86. T.H. Chang, Ch.W. Kung, H.W. Chen, T.Y. Huang, Sh.Y. Kao, HCh. Lu, M.H. Lee, K.M. Boopathi, Ch.W. Chu, KCh. Ho, Planar heterojunction perovskite solar cells incorporating metal-organic framework nanocrystals. Adv. Mater. 27, 7229–7235 (2015)

    Article  CAS  Google Scholar 

  87. K. Matsunaga, T. Tanaka, T. Yamamoto, Y. Ikuhara, First-principles calculations of intrinsic defects in Al2O3. Phys. Rev. B 68, 085110 (2003)

    Article  Google Scholar 

  88. A.I. Surdo, V.S. Kortov, V.A. Pustovarov, V.Y. Yakovlev, UV luminescence of F-centers in aluminum oxide. Phys. Status Solidi C 2, 527 (2005)

    Article  CAS  Google Scholar 

  89. T.V. Perevalov, O.E. Tereshenko, V.A. Gritsenko, V.A. Pustovarov, A.P. Yelisseyev, Ch. Park, J.H. Han, Ch. Lee, Oxygen deficiency defects in amorphous Al2O3. J. Appl. Phys. 108, 013501 (2010)

    Article  Google Scholar 

  90. J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, Ch.S. Lim, J.A. Chang, Y.H. Lee, H. Kim, A. Sarkar, MKh. Nazeeruddin, M. Gratzel, S.I. Seok, Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7, 486–491 (2013)

    Article  CAS  Google Scholar 

  91. A. Akbari, J. Hashemi, E. Mosconi, F.D. Angelisbc, M. Hakala, First principles modelling of perovskite solar cells based on TiO2 and Al2O3: stability and interfacial electronic structure. J. Mater. Chem. A 5, 2339–2345 (2017)

    Article  CAS  Google Scholar 

  92. N. Aristidou, I.S. Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez, Th. Rath, S.A. Haque, The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angew. Chem. Int. Ed. 54, 8208–8212 (2015)

    Article  CAS  Google Scholar 

  93. N.J. Zadeh, M.B. Zarandi, M.R. Nateghi, Effect of crystallization strategies on CH3NH3PbI3 perovskite layer deposited by spin coating method: dependence of photovoltaic performance on morphology evolution. Thin Solid Films 660, 65–74 (2018)

    Article  CAS  Google Scholar 

  94. P.S. Behera, R. Sarkar, S. Bhattacharyya, Nano alumina: a review of the powder synthesis method. Interceram 65, 10–16 (2016)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Yazd photonics research group (YPRG) of the Yazd University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Borhani Zarandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahanbakhshi Zadeh, N., Borhani Zarandi, M. Interfacial engineering of mp-TiO2/CH3NH3PbI3 with Al2O3: Effect of different phases of alumina on performance and stability of perovskite solar cells. Journal of Materials Research 36, 4938–4950 (2021). https://doi.org/10.1557/s43578-021-00442-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00442-9

Navigation