Skip to main content
Log in

Nanomechanical and nanoscratch behavior of oxides formed on inconel 617 at 950 °C

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The current study investigates the thermally grown oxide layers (of the order of 5–10 μm thick) on Inconel 617 at elevated temperature of 950 °C in helium and air atmospheres using nanoindentation and nanoscratch techniques. Nanoindentation is also used to calculate the fracture toughness of the oxides using the crack initiation method. The oxide generated in helium tends to be more brittle with fracture toughness of 1.67 MPa.m1/2 whereas the oxide in air has a value of 2.18 MPa.m1/2. Hardness and elastic modulus extracted from nanoindentation are employed to calculate the adhesion and shear strength of the oxides using scratch technique. The oxide formed in helium exhibited higher adhesion strength compared to the oxide formed in air. The oxide in helium requires a higher load to break through the layer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. C. Cabet, A. Terlain, P. Lett, L. Guétaz, J.M. Gentzbittel, High temperature corrosion of structural materials under gas-cooled reactor helium. Mater. Corros. 57, 147–153 (2006). https://doi.org/10.1002/maco.200503901

    Article  CAS  Google Scholar 

  2. N.W. Richard, Kinetics of gas reactions and environmental degradation in NGNP helium (Idaho National Laboratory, Idaho Falls, 2006). https://doi.org/10.2172/911710

    Book  Google Scholar 

  3. R.N. Wright, Summary of studies of aging and environmental effects on Inconel 617 and Haynes 230 (Idaho National Laboratory, Idaho Falls, 2006), p. 27. https://doi.org/10.2172/911722

    Book  Google Scholar 

  4. K. Natesan, A. Purohit, S.W. Tam, Materials behavior in HTGR environments (Division of Engineering Technology, Office of Nuclear Regulatory Research, US Nuclear Regulatory Commission, 2003)

  5. M.H. Hasan, Effects of mechanical and metallurgical variables on creep, fracture toughness and crack growth behavior of alloy 617 (Order No. 3391486) (2009). Available from ProQuest Dissertations & Theses Global (305066453). Retrieved from http://proxy.library.tamu.edu/login?url=https://www.proquest.com/dissertations-theses/effects-mechanical-metallurgical-variables-on/docview/305066453/se-2?accountid=7082

  6. C. Jang, D. Lee, D. Kim, Oxidation behaviour of an alloy 617 in very high-temperature air and helium environments. Int. J. Press. Vessels Pip. 85, 368–377 (2008). https://doi.org/10.1016/j.ijpvp.2007.11.010

    Article  CAS  Google Scholar 

  7. A. Chatterjee, A.A. Polycarpou, J.R. Abelson, P. Bellon, Nanoscratch study of hard HfB2 thin films using experimental and finite element techniques. Wear 268, 677–685 (2010). https://doi.org/10.1016/j.wear.2009.11.001

    Article  CAS  Google Scholar 

  8. N.G. Chechenin, J. Bøttiger, J.P. Krog, Nanoindentation of amorphous aluminum oxide films I. The influence of the substrate on the plastic properties. Thin Solid Films 261, 219–227 (1995)

    Article  CAS  Google Scholar 

  9. X. Li, D. Diao, B. Bhushan, Fracture mechanisms of thin amorphous carbon films in nanoindentation. Acta Mater. 45, 4453–4461 (1997). https://doi.org/10.1016/S1359-6454(97)00143-2

    Article  CAS  Google Scholar 

  10. X. Li, B. Bhushan, Measurement of fracture toughness of ultra-thin amorphous carbon films. Thin Solid Films 315, 214–221 (1998). https://doi.org/10.1016/S0040-6090(97)00788-8

    Article  CAS  Google Scholar 

  11. A. Mikowski, F. Carlos Serbena, C. Eugnio Foerster, A. Roberto Jurelo, C. Maurcio Lepienski, A method to measure fracture toughness using indentation in REBa 2Cu3O7- superconductor single crystals. J. Appl. Phys. (2011). https://doi.org/10.1063/1.3662121

    Article  Google Scholar 

  12. B.R. Lawn, D.B. Marshall, Hardness, toughness, and brittleness: an indentation analysis. J. Am. Ceram. Soc. 62, 1–4 (1979)

    Article  Google Scholar 

  13. M.S. Rahman, K. Polychronopoulou, A.A. Polycarpou, Tribochemistry of inconel 617 during sliding contact at 950 °C under helium environment for nuclear reactors. J. Nucl. Mater. 521, 21–30 (2019)

    Article  CAS  Google Scholar 

  14. D. Kim, I. Sah, D. Kim, W. Ryu, C. Jang, High temperature oxidation behavior of alloy 617 and Haynes 230 in impurity-controlled helium environments. Oxid. Met. 75, 103–119 (2011). https://doi.org/10.1007/s11085-010-9223-5

    Article  CAS  Google Scholar 

  15. D. Kim, C. Jang, W.S. Ryu, Oxidation characteristics and oxide layer evolution of alloy 617 and Haynes 230 at 900 °C and 1100 °C. Oxid. Met. 71, 271–293 (2009). https://doi.org/10.1007/s11085-009-9142-5

    Article  CAS  Google Scholar 

  16. N. Tayebi, A.A. Polycarpou, Reducing the effects of adhesion and friction in microelectromechanical systems (MEMSs) through surface roughening: comparison between theory and experiments. J. Appl. Phys. (2018). https://doi.org/10.1063/1.2058178

    Article  Google Scholar 

  17. S. Salari, M.S. Rahman, A.A. Polycarpou, A. Beheshti, Elevated temperature mechanical properties of Inconel 617 surface oxide using nanoindentation. Mater. Sci. Eng. A 788, 139539 (2020). https://doi.org/10.1016/j.msea.2020.139539

    Article  CAS  Google Scholar 

  18. B.R. Lawn, A.G. Evans, A model for crack initiation in elastic/plastic indentation fields. J. Mater. Sci. 12, 2195–2199 (1977). https://doi.org/10.1007/BF00552240

    Article  CAS  Google Scholar 

  19. W. Weibull, A statistical distribution function of wide applicability. J. Appl. Mech. 13, 293–297 (1951)

    Article  Google Scholar 

  20. A. Mikowski, F.C. Serbena, C.E. Foerster, C.M. Lepienski, Statistical analysis of threshold load for radial crack nucleation by Vickers indentation in commercial soda-lime silica glass. J. Non Cryst. Solids (2006). https://doi.org/10.1016/j.jnoncrysol.2006.02.112

    Article  Google Scholar 

  21. K.M. Lee, A.A. Polycarpou, Wear of conventional pearlitic and improved bainitic rail steels. Wear 259, 391–399 (2005). https://doi.org/10.1016/j.wear.2005.02.058

    Article  CAS  Google Scholar 

  22. D. Tromans, J.A. Meech, Fracture toughness and surface energies of covalent minerals: theoretical estimates. Miner. Eng. 17, 1–15 (2004). https://doi.org/10.1016/j.mineng.2003.09.006

    Article  CAS  Google Scholar 

  23. J. Päiväsaari, J. Niinistö, P. Myllymäki, C. Dezelah, C.H. Winter, M. Putkonen et al., Atomic layer deposition of rare earth oxides. Rare Earth Oxides Thin Films 111, 15–32 (2006). https://doi.org/10.1007/11499893_2

    Article  Google Scholar 

  24. C. Ma, M. Liu, C. Chen, Y. Lin, Y. Li, J.S. Horwitz et al., The origin of local strain in highly epitaxial oxide thin films. Sci Rep 3, 3092 (2013). https://doi.org/10.1038/srep03092

    Article  Google Scholar 

  25. T.I. Hysitron, 950 Triboindenter User Manual Revision 9.3. 0314 (2014), pp. 1–256

  26. N. Tayebi, A.A. Polycarpou, F.C. Thomas, Effects of substrate on determination of hardness of thin films by nanoscratch and nanoindentation techniques. J. Mater. Res. 19, 1791–1802 (2004). https://doi.org/10.1557/JMR.2004.0233

    Article  CAS  Google Scholar 

  27. N. Yu, A.A. Polycarpou, T.F. Conry, Tip-radius effect in finite element modeling of sub-50 nm shallow nanoindentation. Thin Solid Films 450, 295–303 (2004). https://doi.org/10.1016/j.tsf.2003.10.033

    Article  CAS  Google Scholar 

  28. J.C. Hay, A. Bolshakov, G.M. Pharr, A critical examination of the fundamental relations used in the analysis of nanoindentation data. J. Mater. Res. 14, 2296–2305 (1999). https://doi.org/10.1557/JMR.1999.0306

    Article  CAS  Google Scholar 

  29. M.S. Rahman, K. Polychronopoulou, A.A. Polycarpou, Tribochemical changes of alloy 800HT under sliding contact at elevated temperature in impure helium environment. Wear (2020). https://doi.org/10.1016/j.wear.2020.203508

    Article  Google Scholar 

  30. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)

    Article  CAS  Google Scholar 

  31. S.R. Pergande, A.A. Polycarpou, T.F. Conry, Nanomechanical properties of aluminum 390–T6 rough surfaces undergoing tribological testing. J. Tribol. 126, 573–582 (2004). https://doi.org/10.1115/1.1698949

    Article  CAS  Google Scholar 

  32. P. Benjamin, C. Weaver, Measurement of adhesion of thin films. Proc. R. Soc. Lond. A 254, 163–176 (1960). https://doi.org/10.1098/rspa.1960.0012

    Article  CAS  Google Scholar 

  33. I.A. Ashcroft, B. Derby, Adhesion testing of glass-ceramic thick films on metal substrates. J. Mater. Sci. 28, 2989–2998 (1993). https://doi.org/10.1007/BF00354704

    Article  CAS  Google Scholar 

  34. M.T. Laugier, Adhesion of TiC and TiN coatings prepared by chemical vapour deposition on WC-Co-based cemented carbides. J. Mater. Sci. 21, 2269–2272 (1986). https://doi.org/10.1007/BF01114266

    Article  CAS  Google Scholar 

  35. M.T. Laugier, An energy approach to the adhesion of coatings using the scratch test. Thin Solid Films 117, 243–249 (1984). https://doi.org/10.1016/0040-6090(84)90354-7

    Article  CAS  Google Scholar 

  36. P.J. Burnett, D.S. Rickerby, The scratch adhesion test: an elastic-plastic indentation analysis. Thin Solid Films 157, 233–254 (1988). https://doi.org/10.1016/0040-6090(88)90006-5

    Article  CAS  Google Scholar 

  37. S.J. Bull, D.S. Rickerby, A. Matthews, A. Leyland, A.R. Pace, J. Valli, The use of scratch adhesion testing for the determination of interfacial adhesion: the importance of frictional drag. Surf. Coat. Technol. 36, 503–517 (1988). https://doi.org/10.1016/0257-8972(88)90178-8

    Article  CAS  Google Scholar 

  38. H.E. Evans, Stress effects in high temperature oxidation of metals. Int. Mater. Rev. 40, 1–40 (1995). https://doi.org/10.1179/imr.1995.40.1.1

    Article  CAS  Google Scholar 

  39. J.S. Wang, A.G. Evans, Measurement and analysis of buckling and buckle propagation in compressed oxide layers on superalloy substrates. Acta Mater. 46, 4993–5005 (1998). https://doi.org/10.1016/S1359-6454(98)00172-4

    Article  CAS  Google Scholar 

  40. J.W. Hutchinson, M.D. Thouless, E.G. Liniger, Growth and configurational stability of circular, buckling-driven film delaminations. Acta Metall. Mater. 40, 295–308 (1992). https://doi.org/10.1016/0956-7151(92)90304-W

    Article  CAS  Google Scholar 

  41. D.B. Marshall, A.G. Evans, Measurement of adherence of residually stressed thin films by indentation. I. Mechanics of interface delamination. J. Appl. Phys. 56, 2632–2638 (1984). https://doi.org/10.1063/1.333794

    Article  CAS  Google Scholar 

  42. L.G. Rosenfeld, J.E. Ritter, T.J. Lardner, M.R. Lin, Use of the microindentation technique for determining interfacial fracture energy. J. Appl. Phys. 67, 3291–3296 (1990). https://doi.org/10.1063/1.345363

    Article  Google Scholar 

  43. M.D. Thouless, An analysis of spalling in the microscratch test. Eng. Fract. Mech. 61, 75–81 (1998). https://doi.org/10.1016/S0013-7944(98)00049-6

    Article  Google Scholar 

  44. F. Attar, T. Johannesson, Adhesion evaluation of thin ceramic coatings on tool steel using the scratch testing technique. Surf. Coat. Technol. 78, 87–102 (1996). https://doi.org/10.1016/0257-8972(94)02396-4

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by the U.S. Department of Energy (DOE) under NEUP Project 16-10732. The authors also would like to thank Dr. Richard Wright of INL, Dr. Sam Sham of ANL, and Dr. Yanli Wang of ORNL for providing samples and useful data as well as helpful discussions. Use of the Texas A&M Materials Characterization Facility is acknowledged. The author is also like to acknowledge the help of Dr. Anup K Bandyopadhyay of Materials Development and Characterization Center at Texas A&M University for acquiring the XRD spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas A. Polycarpou.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Disclaimer

Certain information on commercial equipment, material, manufacturers, and suppliers is included in this paper for clarity. This does not imply endorsement from anyone, nor the materials or equipment are the best available for this purpose.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1080 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.S., Polycarpou, A.A. Nanomechanical and nanoscratch behavior of oxides formed on inconel 617 at 950 °C. Journal of Materials Research 37, 580–594 (2022). https://doi.org/10.1557/s43578-021-00438-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00438-5

Navigation