Skip to main content
Log in

Evaluation of amino acids capped silver nanoconjugates for the altered oxidative stress and antioxidant potential in albino mice

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Recent data suggest that there is a continuous need to develop safer and less toxic nanomaterials (NMs). For this, the surface chemistry of commonly used NMs may be modified using several biomolecules/conjugates. The current study has been designed to develop silver nanoconjugates (AgNCs) capped with different amino acids. Characterization of the same was performed using different techniques. During in vitro analysis, l-tyrosine and l-cystine capped AgNCs exhibited antioxidant activity, while l-glycine capped AgNCs showed prooxidant activity. l-cystine and l-tyrosine capped AgNCs also demonstrated good in vivo results. The level of catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), and metallothioneins (MTs) in different organs was evaluated. It is assumed that newly developed nanoconjugates can be utilized as nano-tools for different applications. However, more detailed studies with resolution techniques for safety, the risk associated, and their accuracy are needed for the utilization of these nanoconjugates for specific biomedical uses.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. N. Dasgupta, S. Ranjan, An Introduction to Food Grade Nanoemulsions, vol. 13 (Springer, New York, 2018)

    Google Scholar 

  2. S. Sharifi, S. Behzadi, S. Laurent, M.L. Forrest, P. Stroeve, M. Mahmoudi, Toxicity of nanomaterials. Chem. Soc. Rev. 41(6), 2323–2343 (2012)

    CAS  Google Scholar 

  3. R. Singh, S. Singh, Nanomanipulation of consumer goods: effects on human health and environment, in Nanotechnology in Modern Animal Biotechnology. (Springer, Singapore, 2019), pp. 221–254

    Google Scholar 

  4. V. Dogra, G. Kaur, R. Kumar, S. Kumar, in Nanomaterials; applications; implications and management. New Frontiers of Nanomaterials in Environmental Science, pp. 23–45 (2021)

  5. A. Pietroiusti, H. Stockmann-Juvala, F. Lucaroni, K. Savolainen, Nanomaterial exposure, toxicity, and impact on human health. Wiley Interdiscip Rev. 10(5), 1513 (2018)

    Google Scholar 

  6. P.A. Schulte, V. Leso, M. Niang, I. Iavicoli, Current state of knowledge on the health effects of engineered nanomaterials in workers: a systematic review of human studies and epidemiological investigations. Scand. J. Work Environ. Health 45(3), 217 (2019)

    CAS  Google Scholar 

  7. W. Zhang, W. Wang, D.X. Yu, Z. Xiao, Z. He, Application of nanodiagnostics and nanotherapy to CNS diseases. Nanomedicine 13(18), 2341–2371 (2018)

    CAS  Google Scholar 

  8. J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, R.-T. del Pilar, L.S. Acosta-Torres, L.A. Diaz-Torres, R. Grillo, M.K. Swamy, S. Sharma, Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16(1), 71 (2018)

    Google Scholar 

  9. Z. Mirza, S. Karim, Nanoparticles-based drug delivery and gene therapy for breast cancer: recent advancements and future challenges, in Seminars in Cancer Biology. (Elsevier, 2021), pp. 226–237

    Google Scholar 

  10. A. Gagliardi, E. Giuliano, V. Eeda, M. Fresta, S. Bulotta, V. Awasthi, D. Cosco, Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front. Pharmacol. 12, 17 (2021)

    Google Scholar 

  11. G. Sanità, B. Carrese, A. Lamberti, Nanoparticle surface functionalization: How to improve biocompatibility and cellular internalization. Front. Mol. Biosci. 7, 381 (2020)

    Google Scholar 

  12. M.-A. Neouze, U. Schubert, Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Chem Mon. 139(3), 183–195 (2008)

    CAS  Google Scholar 

  13. A. Ravindran, P. Chandran, S.S. Khan, Biofunctionalized silver nanoparticles: advances and prospects. Colloids Surf. B 105, 342–352 (2013)

    CAS  Google Scholar 

  14. M.A. Ansari, S.M.M. Asiri, M.A. Alzohairy, M.N. Alomary, A. Almatroudi, F.A. Khan, Biofabricated fatty acids-capped silver nanoparticles as potential antibacterial, antifungal, antibiofilm and anticancer agents. Pharmaceuticals 14(2), 139 (2021)

    CAS  Google Scholar 

  15. Periasamy S, Dumbre D, Babu L, Madapusi S, Soni SK, Daima HK, Bhargava SK (2021) Amino Acids Functionalized Inorganic Metal Nanoparticles: Synthetic Nanozymes for Target Specific Binding, Sensing and Catalytic Applications. In: Nanozymes for Environmental Engineering. Springer, pp 1–33

  16. P. Selvakannan, A. Swami, D. Srisathiyanarayanan, P.S. Shirude, R. Pasricha, A.B. Mandale, M. Sastry, Synthesis of aqueous Au core−Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air−water interface. Langmuir 20(18), 7825–7836 (2004)

    CAS  Google Scholar 

  17. M. Annadhasan, T. Muthukumarasamyvel, V. Sankar Babu, N. Rajendiran, Green synthesized silver and gold nanoparticles for colorimetric detection of Hg2+, Pb2+, and Mn2+ in aqueous medium. ACS Sustain. Chem. Eng. 2(4), 887–896 (2014)

    CAS  Google Scholar 

  18. D.R. Bae, W.S. Han, J.M. Lim, S. Kang, J.Y. Lee, D. Kang, J.H. Jung, Lysine-functionalized silver nanoparticles for visual detection and separation of histidine and histidine-tagged proteins. Langmuir 26(3), 2181–2185 (2010)

    CAS  Google Scholar 

  19. A. Contino, G. Maccarrone, M. Zimbone, R. Reitano, P. Musumeci, L. Calcagno, I.P. Oliveri, Tyrosine capped silver nanoparticles: a new fluorescent sensor for the quantitative determination of copper (II) and cobalt (II) ions. J. Colloid Interface Sci. 462, 216–222 (2016)

    CAS  Google Scholar 

  20. S. Shankar, J.-W. Rhim, Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films. Carbohydr. Polym. 130, 353–363 (2015)

    CAS  Google Scholar 

  21. D.R. Raj, S. Prasanth, C. Sudarsanakumar, Development of LSPR-based optical fiber dopamine sensor using L-tyrosine-capped silver nanoparticles and its nonlinear optical properties. Plasmonics 12(4), 1227–1234 (2017)

    Google Scholar 

  22. P.B. Pencharz, J.W. Hsu, R.O. Ball, Aromatic amino acid requirements in healthy human subjects. J. Nutr. 137(6), 1576S-1578S (2007)

    CAS  Google Scholar 

  23. H.K. Daima, P. Selvakannan, A.E. Kandjani, R. Shukla, S.K. Bhargava, V. Bansal, Synergistic influence of polyoxometalate surface corona towards enhancing the antibacterial performance of tyrosine-capped Ag nanoparticles. Nanoscale 6(2), 758–765 (2014)

    CAS  Google Scholar 

  24. C.C. White, H. Viernes, C.M. Krejsa, D. Botta, T.J. Kavanagh, Fluorescence-based microtiter plate assay for glutamate–cysteine ligase activity. Anal. Biochem. 318(2), 175–180 (2003)

    CAS  Google Scholar 

  25. M. Aslaksen, O. Romarheim, T. Storebakken, A. Skrede, Evaluation of content and digestibility of disulfide bonds and free thiols in unextruded and extruded diets containing fish meal and soybean protein sources. Anim. Feed Sci. Technol. 128(3–4), 320–330 (2006)

    CAS  Google Scholar 

  26. A. Kükürt, V. Gelen, Ö.F. Başer, H.A. Deveci, M. Karapehlivan, Thiols: Role in oxidative stress-related disorders. In: Lipid Peroxidation. IntechOpen (2021)

  27. A.L. Albrecht, R.K. Singh, S. Somji, M.A. Sens, D.A. Sens, S.H. Garrett, Basal and metal-induced expression of metallothionein isoform 1 and 2 genes in the RWPE-1 human prostate epithelial cell line. J. Appl. Toxicol. 28(3), 283–293 (2008)

    CAS  Google Scholar 

  28. M. Bensellam, D.R. Laybutt, J.-C. Jonas, Emerging roles of metallothioneins in beta cell pathophysiology: beyond and above metal homeostasis and antioxidant response. Biology 10(3), 176 (2021)

    CAS  Google Scholar 

  29. S. Sharma, A. Rais, R. Sandhu, W. Nel, M. Ebadi, Clinical significance of metallothioneins in cell therapy and nanomedicine. Int. J. Nanomed. 8, 1477 (2013)

    Google Scholar 

  30. L. Vanickova, R. Guran, S. Kollár, G. Emri, S. Krizkova, T. Do, Z. Heger, O. Zitka, V. Adam, Mass spectrometric imaging of cysteine rich proteins in human skin. Int. J. Biol. Macromol. 125, 270–277 (2019)

    CAS  Google Scholar 

  31. M. Girilal, A.M. Fayaz, L. Elumalai, A. Sathiyaseelan, J. Gandhiappan, P. Kalaichelvan, Comparative stress physiology analysis of biologically and chemically synthesized silver nanoparticles on Solanum lycopersicum L. Colloid Interface Sci. Commun. 24, 1–6 (2018)

    CAS  Google Scholar 

  32. A. Yaqub, S.A. Ditta, K.M. Anjum, F. Tanvir, N. Malkani, M.Z. Yousaf, Comparative analysis of toxicity induced by different synthetic silver nanoparticles in albino mice. Bionanoscience 9(3), 553–563 (2019)

    Google Scholar 

  33. Y. Shang, F. Wu, L. Qi, Highly selective colorimetric assay for nickel ion using N-acetyl-l-cysteine-functionalized silver nanoparticles. J. Nanoparticle Res. 14(10), 1–7 (2012)

    Google Scholar 

  34. N. Agasti, V.K. Singh, N. Kaushik, Synthesis of water soluble glycine capped silver nanoparticles and their surface selective interaction. Mater. Res. Bull. 64, 17–21 (2015)

    CAS  Google Scholar 

  35. Y. Gavamukulya, E.N. Maina, A.M. Meroka, E.S. Madivoli, H.A. El-Shemy, F. Wamunyokoli, G. Magoma, Green synthesis and characterization of highly stable silver nanoparticles from ethanolic extracts of fruits of Annona muricata. J. Inorg. Organomet. Polym Mater. 30(4), 1231–1242 (2020)

    CAS  Google Scholar 

  36. S. Rajput, D. Kumar, V. Agrawal, Green synthesis of silver nanoparticles using Indian Belladonna extract and their potential antioxidant, anti-inflammatory, anticancer and larvicidal activities. Plant Cell Rep. 39(7), 1–19 (2020)

    Google Scholar 

  37. M. Ijaz, M. Zafar, T. Iqbal, Green synthesis of silver nanoparticles by using various extracts: a review. Inorg. NanoMet. Chem. 9(2), 128–132 (2020)

    Google Scholar 

  38. L. Valentini, M. Cardinali, E. Fortunati, L. Torre, J.M. Kenny, A novel method to prepare conductive nanocrystalline cellulose/graphene oxide composite films. Mater. Lett. 105, 4–7 (2013)

    CAS  Google Scholar 

  39. M.Z. Fahmi, D.L.N. Wibowo, S.C.W. Sakti, H.V. Lee, Human serum albumin capsulated hydrophobic carbon nanodots as staining agent on HeLa tumor cell. Mater. Chem. Phys. 239, 122266 (2020)

    CAS  Google Scholar 

  40. S. Wei, C. Guo, L. Wang, J. Xu, H. Dong, Bacterial synthesis of PbS nanocrystallites in one-step with l-cysteine serving as both sulfur source and capping ligand. Sci. Rep. 11(1), 1–7 (2021)

    Google Scholar 

  41. P. Selvakannan, R. Ramanathan, B.J. Plowman, Y.M. Sabri, H.K. Daima, A.P. O’Mullane, V. Bansal, S.K. Bhargava, Probing the effect of charge transfer enhancement in off resonance mode SERS via conjugation of the probe dye between silver nanoparticles and metal substrates. Phys. Chem. Chem. Phys. 15(31), 12920–12929 (2013)

    CAS  Google Scholar 

  42. M.S. Blois, Antioxidant determinations by the use of a stable free radical. Nature 181(4617), 1199–1200 (1958)

    CAS  Google Scholar 

  43. Z. Bedlovičová, I. Strapáč, M. Baláž, A. Salayová, A brief overview on antioxidant activity determination of silver nanoparticles. Molecules 25(14), 3191 (2020)

    Google Scholar 

  44. S.M. Deneke, Thiol-based antioxidants. Curr. Top. Cell. Regul. 36, 151–180 (2001)

    Google Scholar 

  45. N.M. Giles, A.B. Watts, G.I. Giles, F.H. Fry, J.A. Littlechild, C. Jacob, Metal and redox modulation of cysteine protein function. Chem. Biol. 10(8), 677–693 (2003)

    CAS  Google Scholar 

  46. J.-H. Kim, H.-J. Jang, W.-Y. Cho, S.-J. Yeon, C.-H. Lee, In vitro antioxidant actions of sulfur-containing amino acids. Arab. J. Chem. 13(1), 1678–1684 (2020)

    CAS  Google Scholar 

  47. P. Maneewattanapinyo, W. Banlunara, C. Thammacharoen, S. Ekgasit, T. Kaewamatawong, An evaluation of acute toxicity of colloidal silver nanoparticles. J. Vet. Med. Sci. (2011). https://doi.org/10.1292/jvms.11-0038

    Article  Google Scholar 

  48. R.K. Zalups, S. Ahmad, Molecular handling of cadmium in transporting epithelia. Toxicol. Appl. Pharmacol. 186(3), 163–188 (2003)

    CAS  Google Scholar 

  49. W. Xiao, Y. Liu, D.M. Templeton, Pleiotropic effects of cadmium in mesangial cells. Toxicol. Appl. Pharmacol. 238(3), 315–326 (2009)

    CAS  Google Scholar 

  50. Y. Jing, L.-Z. Liu, Y. Jiang, Y. Zhu, N.L. Guo, J. Barnett, Y. Rojanasakul, F. Agani, B.-H. Jiang, Cadmium increases HIF-1 and VEGF expression through ROS, ERK, and AKT signaling pathways and induces malignant transformation of human bronchial epithelial cells. Toxicol. Sci. 125(1), 10–19 (2012)

    CAS  Google Scholar 

  51. V. Arroyo, K. Flores, L. Ortiz, L. Gómez-Quiroz, M. Gutiérrez-Ruiz, Liver and cadmium toxicity. J Drug Metab Toxicol S 5, 001 (2012)

    Google Scholar 

  52. F. Thévenod, W.-K. Lee, Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch. Toxicol. 87(10), 1743–1786 (2013)

    Google Scholar 

  53. T. Wei, J. Jia, Y. Wada, C.M. Kapron, J. Liu, Dose dependent effects of cadmium on tumor angiogenesis. Oncotarget 8(27), 44944 (2017)

    Google Scholar 

  54. S. Vasudevan, E. Laconi, S.E. Abanobi, P.M. Rao, S. Rajalakshmi, D.S. Sarma, Effect of glycine on the induction of orotic aciduria and urinary bladder tumorigenesis in the rat. Toxicol. Pathol. 15(2), 194–197 (1987)

    CAS  Google Scholar 

  55. W.C. Zhang, N. Shyh-Chang, H. Yang, A. Rai, S. Umashankar, S. Ma, B.S. Soh, L.L. Sun, B.C. Tai, M.E. Nga, Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148(1–2), 259–272 (2012)

    CAS  Google Scholar 

  56. O. Jamakala, U.A. Rani, Amelioration effect of zinc and iron supplementation on selected oxidative stress enzymes in liver and kidney of cadmium-treated male albino rat. Toxicol. Int. 22(1), 1 (2015)

    CAS  Google Scholar 

  57. M. Negahdary, R. Chelongar, S.K. Zadeh, M. Ajdary, The antioxidant effects of silver, gold, and zinc oxide nanoparticles on male mice in in vivo condition. Adv. Biomed. Res. 4(1), 69–69 (2015)

    Google Scholar 

  58. Y.-H. Lee, F.-Y. Cheng, H.-W. Chiu, J.-C. Tsai, C.-Y. Fang, C.-W. Chen, Y.-J. Wang, Cytotoxicity, oxidative stress, apoptosis and the autophagic effects of silver nanoparticles in mouse embryonic fibroblasts. Biomaterials 35(16), 4706–4715 (2014)

    CAS  Google Scholar 

  59. S. Mehrzadi, I. Fatemi, M. Esmaeilizadeh, H. Ghaznavi, H. Kalantar, M. Goudarzi, Hepatoprotective effect of berberine against methotrexate induced liver toxicity in rats. Biomed. Pharmacother. 97, 233–239 (2018)

    CAS  Google Scholar 

  60. O.M. Steinebach, H.T. Wolterbeek, Role of cytosolic copper, metallothionein and glutathione in copper toxicity in rat hepatoma tissue culture cells. Toxicology 92(1–3), 75–90 (1994)

    CAS  Google Scholar 

  61. E. Beytut, M. Aksakal, The effect of long-term supplemental dietary cadmium on lipid peroxidation and the antioxidant system in the liver and kidneys of rabbits. Turk. J. Vet. Anim. Sci. 26(5), 1055–1060 (2002)

    Google Scholar 

  62. W. Dröge, R. Breitkreutz, Glutathione and immune function. Proc. Nutr. Soc. 59(4), 595–600 (2000)

    Google Scholar 

  63. D. Morris, M. Khurasany, T. Nguyen, J. Kim, F. Guilford, R. Mehta, D. Gray, B. Saviola, V. Venketaraman, Glutathione and infection. Biochim. Biophys. Acta BBA 1830(5), 3329–3349 (2013)

    CAS  Google Scholar 

  64. A.O. Docea, D. Calina, A.M. Buga, O. Zlatian, M. Paoliello, G.D. Mogosanu, C.T. Streba, E.L. Popescu, A.E. Stoica, A.C. Bîrcă, The effect of silver nanoparticles on antioxidant/pro-oxidant balance in a murine model. Int. J. Mol. Sci. 21(4), 1233 (2020)

    CAS  Google Scholar 

  65. C.D. Klaassen, J. Liu, S. Choudhuri, Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu. Rev. Pharmacol. Toxicol. 39(1), 267–294 (1999)

    CAS  Google Scholar 

  66. J. Liu, Z. Wang, F.D. Liu, A.B. Kane, R.H. Hurt, Chemical transformations of nanosilver in biological environments. ACS Nano 6(11), 9887–9899 (2012)

    CAS  Google Scholar 

  67. L. Atanesyan, V. Günther, S.E. Celniker, O. Georgiev, W. Schaffner, Characterization of MtnE, the fifth metallothionein member in Drosophila. J. Biol. Inorg. Chem. 16(7), 1047–1056 (2011)

    CAS  Google Scholar 

  68. S. Smulders, C. Larue, G. Sarret, H. Castillo-Michel, J. Vanoirbeek, P.H. Hoet, Lung distribution, quantification, co-localization and speciation of silver nanoparticles after lung exposure in mice. Toxicol. Lett. 238(1), 1–6 (2015)

    CAS  Google Scholar 

  69. P.L. Goering, C.D. Klaassen, Tolerance to cadmium-induced toxicity depends on presynthesized metallothionein in liver. J. Toxicol. Environ. Health Part A 14(5–6), 803–812 (1984)

    CAS  Google Scholar 

  70. G. Nordberg, R. Goyer, M. Nordberg, Comparative toxicity of cadmium-metallothionein and cadmium chloride on mouse kidney. Arch. Pathol. 99(4), 192–197 (1975)

    CAS  Google Scholar 

  71. S. Bhakya, S. Muthukrishnan, M. Sukumaran, M. Muthukumar, Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl. Nanosci. 6(5), 755–766 (2016)

    CAS  Google Scholar 

  72. M. Sharifi-Rad, P. Pohl, F. Epifano, J.M. Álvarez-Suarez, Green synthesis of silver nanoparticles using Astragalus tribuloides Delile. Root extract: characterization, antioxidant, antibacterial, and anti-inflammatory activities. Nanomaterials 10(12), 2383 (2020)

    CAS  Google Scholar 

  73. G.K. Jayaprakasha, R. Singh, K. Sakariah, Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem. 73(3), 285–290 (2001)

    CAS  Google Scholar 

  74. M.N. Alam, N.J. Bristi, M. Rafiquzzaman, Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J. 21(2), 143–152 (2013)

    Google Scholar 

  75. Co-operation OfE, Development, Test No. 407: repeated dose 28-day oral toxicity study in rodents (OECD Publishing, 2008)

  76. S. Marklund, G. Marklund, Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47(3), 469–474 (1974)

    CAS  Google Scholar 

  77. M. Javed, N. Usmani, I. Ahmad, M. Ahmad, Studies on the oxidative stress and gill histopathology in Channa punctatus of the canal receiving heavy metal-loaded effluent of Kasimpur Thermal Power Plant. Environ. Monit. Assess. 187(1), 4179 (2015)

    Google Scholar 

  78. S. Roy, S. Bhattacharya, Arsenic-induced histopathology and synthesis of stress proteins in liver and kidney of Channa punctatus. Ecotoxicol. Environ. Saf. 65(2), 218–229 (2006)

    CAS  Google Scholar 

  79. K.A. Delmond, T. Vicari, I.C. Guiloski, A.C. Dagostim, C.L. Voigt, H.C.S. de Assis, W.A. Ramsdorf, M.M. Cestari, Antioxidant imbalance and genotoxicity detected in fish induced by titanium dioxide nanoparticles (NpTiO2) and inorganic lead (PbII). Environ. Toxicol. Pharmacol. 67, 42–52 (2019)

    CAS  Google Scholar 

  80. A. Viarengo, E. Ponzano, F. Dondero, R. Fabbri, A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Marine Environ Res 44(1), 69–84 (1997)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Departments of Zoology and Chemistry, and the Centre for Advanced Studies in Physics (CASP), Government College University, Lahore, Pakistan, for their kind support in providing all the research facilities to undertake this study.

Funding

Not applicable (N/A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarwar Allah Ditta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

Ethical clearance was obtained before all the experimentation involving animals, and animals were dealt with as per guidelines set by the animal handling committee of the Government College University, Lahore (GCU-IIB-827 dated 07-10-2019).

Informed consent

This research does not involve human participants; therefore, no informed consent is needed.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 254 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ditta, S.A., Yaqub, A., Ullah, R. et al. Evaluation of amino acids capped silver nanoconjugates for the altered oxidative stress and antioxidant potential in albino mice. Journal of Materials Research 36, 4344–4359 (2021). https://doi.org/10.1557/s43578-021-00427-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00427-8

Keywords

Navigation