Abstract
Amorphous Co–Mo–B alloy supported on reduced graphene oxide (r-GO) was synthesized by chemical reduction method. Detailed characterizations revealed that catalysts still maintained the amorphous structure with the introduction of r-GO. The appropriate amount of graphene oxide not only favors the dispersion and stabilization of Co–Mo–B alloy due to synergistic effect of metal support but also effectively reduces the particle size in the fabrication process. Compared with unsupported Co–Mo–B, Co–Mo–B/r-GO-3 hybrid exhibited higher hydrogen generation rate (HGR) of 4689.5 \(\text{mL}\, {\text{min}}^{-1}\, {\text{g}}^{-1}\), a smaller average grain size of 28.35 nm and better durability and recyclability that retained 70.25% of its initial activity after five cycles. An activation energy of 35.06 \(\text{kJ}\, {\text{mol}}^{-1}\) was observed in Co–Mo–B/r-GO-3. These results suggest that Co–Mo–B/r-GO-3 hybrid is a promising catalyst for hydrogen generation from NaBH4 hydrolysis. Furthermore, kinetic factors such as NaBH4 concentration, NaOH concentration and temperature have also been investigated to influence the rate of hydrolysis of NaBH4.
Graphic abstract
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
H. Zhang, G. Xu, L. Zhang, W. Wang, W. Miao, K. Chen, L. Cheng, Y. Li, S. Han, Renew. Energy (2020). https://doi.org/10.1016/j.renene.2020.08.031
Y.-J. Lee, Y.-S. Lee, H.A. Shin, Y.S. Jo, H. Jeong, H. Sohn, C.W. Yoon, Y. Kim, K.-B. Kim, S.W. Nam, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.155759
Y. Li, X. Hou, J. Wang, X. Feng, L. Cheng, H. Zhang, S. Han, Int. J. Hydrogen Energy (2019). https://doi.org/10.1016/j.ijhydene.2019.02.124
J.O. Abe, A.P.I. Popoola, E. Ajenifuja, O.M. Popoola, Int. J. Hydrogen Energy (2019). https://doi.org/10.1016/j.ijhydene.2019.04.068
J. Mao, Z. Guo, X. Yu, H. Liu, J. Mater. Res. (2011). https://doi.org/10.1557/jmr.2011.72
J. Liao, D. Lu, G. Diao, X. Zhang, M. Zhao, H. Li, A.C.S. Sustain. Chem. Eng. (2018). https://doi.org/10.1021/acssuschemeng.7b03994
H.N. Abdelhamid, Int. J. Hydrogen Energy (2021). https://doi.org/10.1016/j.ijhydene.2020.09.186
C. Kim, S.S. Lee, W. Li, J.D. Fortner, Appl. Catal. A (2020). https://doi.org/10.1016/j.apcata.2019.117303
L. Ouyang, W. Chen, J. Liu, M. Felderhoff, H. Wang, Adv. Energy Mater. (2017). https://doi.org/10.1002/aenm.201700299
A. Boran, S. Erkan, S. Ozkar, I. Eroglu, Int. J. Energy Res. (2013). https://doi.org/10.1002/er.3007
Z. Zhang, Z.-H. Lu, X. Chen, A.C.S. Sustain, Chem. Eng. (2015). https://doi.org/10.1021/acssuschemeng.5b00250
C. Huff, J.M. Long, A. Heyman, T.M. Abdel-Fattah, A.C.S. Appl. Energy Mater. (2018). https://doi.org/10.1021/acsaem.8b00748
Z. Zhang, Z.-H. Lu, H. Tan, X. Chen, Q. Yao, J. Mater. Chem. A (2015). https://doi.org/10.1039/c5ta06197k
J. Wang, D. Ke, Y. Li, H. Zhang, C. Wang, X. Zhao, Y. Yuan, S. Han, Mater. Res. Bull. (2017). https://doi.org/10.1016/j.materresbull.2017.07.039
D. Xu, P. Dai, Q. Guo, X. Yue, Int. J. Hydrogen Energy (2008). https://doi.org/10.1016/j.ijhydene.2008.09.065
H. Yuan, S. Wang, Z. Ma, M. Kundu, B. Tang, J. Li, X. Wang, Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.126474
X. Wang, J. Liao, H. Li, H. Wang, R. Wang, B.G. Pollet, S. Ji, Int. J. Hydrogen Energy (2018). https://doi.org/10.1016/j.ijhydene.2018.07.147
C. Peng, T. Li, Y. Zou, C. Xiang, F. Xu, J. Zhang, L. Sun, Int. J. Hydrogen Energy (2021). https://doi.org/10.1016/j.ijhydene.2020.10.026
D. Ke, Y. Tao, Y. Li, X. Zhao, L. Zhang, J. Wang, S. Han, Int. J. Hydrogen Energy (2015). https://doi.org/10.1016/j.ijhydene.2015.04.041
Y. Wei, R. Wang, L. Meng, Y. Wang, G. Li, S. Xin, X. Zhao, K. Zhang, Int. J. Hydrogen Energy (2017). https://doi.org/10.1016/j.ijhydene.2016.12.130
Z. Wu, X. Mao, Q. Zi, R. Zhang, T. Dou, A.C.K. Yip, J. Power Sources (2014). https://doi.org/10.1016/j.jpowsour.2014.06.067
S. Santra, D. Das, N.S. Das, K.K. Nanda, A.C.S. Appl. Energy Mater. (2019). https://doi.org/10.1021/acsaem.8b01197
R. Fernandes, N. Patel, A. Miotello, R. Jaiswal, D.C. Kothari, Int. J. Hydrogen Energy (2011). https://doi.org/10.1016/j.ijhydene.2011.08.021
G.M. Arzac, D. Hufschmidt, M.C. Jiménez De Haro, A. Fernández, B. Sarmiento, M.A. Jiménez, Int. J. Hydrogen Energy (2012). https://doi.org/10.1016/j.ijhydene.2012.06.117
N. Patel, R. Fernandes, A. Miotello, J. Catal. (2010). https://doi.org/10.1016/j.jcat.2010.02.014
D. Deng, K.S. Novoselov, Q. Fu, N. Zheng, Z. Tian, X. Bao, Nat. Nanotechnol. (2016). https://doi.org/10.1038/NNANO.2015.340
B.L. Dasari, J.M. Nouri, D. Brabazon, S. Naher, Energy (2017). https://doi.org/10.1016/j.energy.2017.08.048
R. Krishna, D.M. Fernandes, C. Dias, J. Ventura, C. Freire, E. Titus, Int. J. Hydrogen Energy (2016). https://doi.org/10.1016/j.ijhydene.2015.12.052
L. Shi, W. Xie, Z. Jian, X. Liao Y. Wang, Int. J. Hydrogen Energy (2019). https://doi.org/10.1016/j.ijhydene.2019.05.104
B. Li, Q. Yan, C. Song, P. Yan, K. Ye, K. Cheng, K. Zhu, J. Yan, D. Cao, G. Wang, Appl. Surf. Sci. (2019). https://doi.org/10.1016/j.apsusc.2019.06.110
Z. Cui, Y. Guo, J. Ma, Int. J. Hydrogen Energy (2016). https://doi.org/10.1016/j.ijhydene.2015.11.081
C. Xiang, D. Jiang, Z. She, Y. Zou, H. Chu, S. Qiu, H. Zhang, F. Xu, C. Tang, L. Sun, Int. J. Hydrogen Energy (2015). https://doi.org/10.1016/j.ijhydene.2015.01.145
A. Chunduri, S. Gupta, O. Bapat, A. Bhide, R. Fernandes, M.K. Patel, V. Bambole, A. Miotello, N. Patel, Appl. Catal. B Environ. (2019). https://doi.org/10.1016/j.apcatb.2019.118051
NIST X-ray Photoelectron Spectroscopy Database. NIST Standard Reference Database Number 20 (2000). https://doi.org/10.18434/T4T88K
Thermo Scientific. XPS Interpretation of Carbon (2016). https://xpssimplified.com/elements/carbon.php. Accessed 6 March 2021
T. Wu, B. Zhang, Z. Wu, J. Zhang, H. Liu, S. Yu, Z. Huang, X. Cai, RSC Adv. (2019). https://doi.org/10.1039/c9ra08372c
Y. Yan, Z. Zhang, S.-M. Bak, S. Yao, X. Hu, Z. Shadike, C.-L. Do-Thanh, F. Zhang, H. Chen, X. Lyu, K. Chen, Y. Zhu, X. Liu, P. Ouyang, J. Fu, S. Dai, ACS Catal. (2019). https://doi.org/10.1021/acscatal.8b03230
S. Santra, D. Das, N.S. Das, K.K. Nanda, Chem. Sci. (2017). https://doi.org/10.1039/c7sc00162b
N. Sahiner, A.O. Yasar, Ind. Eng. Chem. Res. (2016). https://doi.org/10.1021/acs.iecr.6b03089
Y. Li, Q. Zhang, N. Zhang, L. Zhu, J. Zheng, B.H. Chen, Int. J. Hydrogen Energy (2013). https://doi.org/10.1016/j.ijhydene.2013.07.071
Y. Wang, W. Meng, D. Wang, Z. Wang, K. Zou, Z. Cao, K. Zhang, S. Wu, G. Li, Int. J. Hydrogen Energy (2019). https://doi.org/10.1016/j.ijhydene.2019.07.068
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no conflicts of interest to declare that are relevant to the content of this article.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Lei, W., Jin, H., Gao, J. et al. Efficient hydrogen generation from the NaBH4 hydrolysis by amorphous Co–Mo–B alloy supported on reduced graphene oxide. Journal of Materials Research 36, 4154–4168 (2021). https://doi.org/10.1557/s43578-021-00374-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43578-021-00374-4