Skip to main content

Advertisement

Log in

Efficient hydrogen generation from the NaBH4 hydrolysis by amorphous Co–Mo–B alloy supported on reduced graphene oxide

  • Article
  • Focus Issue: Advanced Nanocatalysts for Electrochemical Energy Storage and Generation
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Amorphous Co–Mo–B alloy supported on reduced graphene oxide (r-GO) was synthesized by chemical reduction method. Detailed characterizations revealed that catalysts still maintained the amorphous structure with the introduction of r-GO. The appropriate amount of graphene oxide not only favors the dispersion and stabilization of Co–Mo–B alloy due to synergistic effect of metal support but also effectively reduces the particle size in the fabrication process. Compared with unsupported Co–Mo–B, Co–Mo–B/r-GO-3 hybrid exhibited higher hydrogen generation rate (HGR) of 4689.5 \(\text{mL}\, {\text{min}}^{-1}\, {\text{g}}^{-1}\), a smaller average grain size of 28.35 nm and better durability and recyclability that retained 70.25% of its initial activity after five cycles. An activation energy of 35.06 \(\text{kJ}\, {\text{mol}}^{-1}\) was observed in Co–Mo–B/r-GO-3. These results suggest that Co–Mo–B/r-GO-3 hybrid is a promising catalyst for hydrogen generation from NaBH4 hydrolysis. Furthermore, kinetic factors such as NaBH4 concentration, NaOH concentration and temperature have also been investigated to influence the rate of hydrolysis of NaBH4.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. H. Zhang, G. Xu, L. Zhang, W. Wang, W. Miao, K. Chen, L. Cheng, Y. Li, S. Han, Renew. Energy (2020). https://doi.org/10.1016/j.renene.2020.08.031

    Article  Google Scholar 

  2. Y.-J. Lee, Y.-S. Lee, H.A. Shin, Y.S. Jo, H. Jeong, H. Sohn, C.W. Yoon, Y. Kim, K.-B. Kim, S.W. Nam, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.155759

    Article  Google Scholar 

  3. Y. Li, X. Hou, J. Wang, X. Feng, L. Cheng, H. Zhang, S. Han, Int. J. Hydrogen Energy (2019). https://doi.org/10.1016/j.ijhydene.2019.02.124

    Article  Google Scholar 

  4. J.O. Abe, A.P.I. Popoola, E. Ajenifuja, O.M. Popoola, Int. J. Hydrogen Energy (2019). https://doi.org/10.1016/j.ijhydene.2019.04.068

    Article  Google Scholar 

  5. J. Mao, Z. Guo, X. Yu, H. Liu, J. Mater. Res. (2011). https://doi.org/10.1557/jmr.2011.72

    Article  Google Scholar 

  6. J. Liao, D. Lu, G. Diao, X. Zhang, M. Zhao, H. Li, A.C.S. Sustain. Chem. Eng. (2018). https://doi.org/10.1021/acssuschemeng.7b03994

    Article  Google Scholar 

  7. H.N. Abdelhamid, Int. J. Hydrogen Energy (2021). https://doi.org/10.1016/j.ijhydene.2020.09.186

    Article  Google Scholar 

  8. C. Kim, S.S. Lee, W. Li, J.D. Fortner, Appl. Catal. A (2020). https://doi.org/10.1016/j.apcata.2019.117303

    Article  Google Scholar 

  9. L. Ouyang, W. Chen, J. Liu, M. Felderhoff, H. Wang, Adv. Energy Mater. (2017). https://doi.org/10.1002/aenm.201700299

    Article  Google Scholar 

  10. A. Boran, S. Erkan, S. Ozkar, I. Eroglu, Int. J. Energy Res. (2013). https://doi.org/10.1002/er.3007

    Article  Google Scholar 

  11. Z. Zhang, Z.-H. Lu, X. Chen, A.C.S. Sustain, Chem. Eng. (2015). https://doi.org/10.1021/acssuschemeng.5b00250

    Article  Google Scholar 

  12. C. Huff, J.M. Long, A. Heyman, T.M. Abdel-Fattah, A.C.S. Appl. Energy Mater. (2018). https://doi.org/10.1021/acsaem.8b00748

    Article  Google Scholar 

  13. Z. Zhang, Z.-H. Lu, H. Tan, X. Chen, Q. Yao, J. Mater. Chem. A (2015). https://doi.org/10.1039/c5ta06197k

    Article  Google Scholar 

  14. J. Wang, D. Ke, Y. Li, H. Zhang, C. Wang, X. Zhao, Y. Yuan, S. Han, Mater. Res. Bull. (2017). https://doi.org/10.1016/j.materresbull.2017.07.039

    Article  Google Scholar 

  15. D. Xu, P. Dai, Q. Guo, X. Yue, Int. J. Hydrogen Energy (2008). https://doi.org/10.1016/j.ijhydene.2008.09.065

    Article  Google Scholar 

  16. H. Yuan, S. Wang, Z. Ma, M. Kundu, B. Tang, J. Li, X. Wang, Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.126474

    Article  Google Scholar 

  17. X. Wang, J. Liao, H. Li, H. Wang, R. Wang, B.G. Pollet, S. Ji, Int. J. Hydrogen Energy (2018). https://doi.org/10.1016/j.ijhydene.2018.07.147

    Article  Google Scholar 

  18. C. Peng, T. Li, Y. Zou, C. Xiang, F. Xu, J. Zhang, L. Sun, Int. J. Hydrogen Energy (2021). https://doi.org/10.1016/j.ijhydene.2020.10.026

    Article  Google Scholar 

  19. D. Ke, Y. Tao, Y. Li, X. Zhao, L. Zhang, J. Wang, S. Han, Int. J. Hydrogen Energy (2015). https://doi.org/10.1016/j.ijhydene.2015.04.041

    Article  Google Scholar 

  20. Y. Wei, R. Wang, L. Meng, Y. Wang, G. Li, S. Xin, X. Zhao, K. Zhang, Int. J. Hydrogen Energy (2017). https://doi.org/10.1016/j.ijhydene.2016.12.130

    Article  Google Scholar 

  21. Z. Wu, X. Mao, Q. Zi, R. Zhang, T. Dou, A.C.K. Yip, J. Power Sources (2014). https://doi.org/10.1016/j.jpowsour.2014.06.067

    Article  Google Scholar 

  22. S. Santra, D. Das, N.S. Das, K.K. Nanda, A.C.S. Appl. Energy Mater. (2019). https://doi.org/10.1021/acsaem.8b01197

    Article  Google Scholar 

  23. R. Fernandes, N. Patel, A. Miotello, R. Jaiswal, D.C. Kothari, Int. J. Hydrogen Energy (2011). https://doi.org/10.1016/j.ijhydene.2011.08.021

    Article  Google Scholar 

  24. G.M. Arzac, D. Hufschmidt, M.C. Jiménez De Haro, A. Fernández, B. Sarmiento, M.A. Jiménez, Int. J. Hydrogen Energy (2012). https://doi.org/10.1016/j.ijhydene.2012.06.117

    Article  Google Scholar 

  25. N. Patel, R. Fernandes, A. Miotello, J. Catal. (2010). https://doi.org/10.1016/j.jcat.2010.02.014

    Article  Google Scholar 

  26. D. Deng, K.S. Novoselov, Q. Fu, N. Zheng, Z. Tian, X. Bao, Nat. Nanotechnol. (2016). https://doi.org/10.1038/NNANO.2015.340

    Article  Google Scholar 

  27. B.L. Dasari, J.M. Nouri, D. Brabazon, S. Naher, Energy (2017). https://doi.org/10.1016/j.energy.2017.08.048

    Article  Google Scholar 

  28. R. Krishna, D.M. Fernandes, C. Dias, J. Ventura, C. Freire, E. Titus, Int. J. Hydrogen Energy (2016). https://doi.org/10.1016/j.ijhydene.2015.12.052

    Article  Google Scholar 

  29. L. Shi, W. Xie, Z. Jian, X. Liao Y. Wang, Int. J. Hydrogen Energy (2019). https://doi.org/10.1016/j.ijhydene.2019.05.104

  30. B. Li, Q. Yan, C. Song, P. Yan, K. Ye, K. Cheng, K. Zhu, J. Yan, D. Cao, G. Wang, Appl. Surf. Sci. (2019). https://doi.org/10.1016/j.apsusc.2019.06.110

    Article  Google Scholar 

  31. Z. Cui, Y. Guo, J. Ma, Int. J. Hydrogen Energy (2016). https://doi.org/10.1016/j.ijhydene.2015.11.081

    Article  Google Scholar 

  32. C. Xiang, D. Jiang, Z. She, Y. Zou, H. Chu, S. Qiu, H. Zhang, F. Xu, C. Tang, L. Sun, Int. J. Hydrogen Energy (2015). https://doi.org/10.1016/j.ijhydene.2015.01.145

    Article  Google Scholar 

  33. A. Chunduri, S. Gupta, O. Bapat, A. Bhide, R. Fernandes, M.K. Patel, V. Bambole, A. Miotello, N. Patel, Appl. Catal. B Environ. (2019). https://doi.org/10.1016/j.apcatb.2019.118051

    Article  Google Scholar 

  34. NIST X-ray Photoelectron Spectroscopy Database. NIST Standard Reference Database Number 20 (2000). https://doi.org/10.18434/T4T88K

  35. Thermo Scientific. XPS Interpretation of Carbon (2016). https://xpssimplified.com/elements/carbon.php. Accessed 6 March 2021

  36. T. Wu, B. Zhang, Z. Wu, J. Zhang, H. Liu, S. Yu, Z. Huang, X. Cai, RSC Adv. (2019). https://doi.org/10.1039/c9ra08372c

    Article  Google Scholar 

  37. Y. Yan, Z. Zhang, S.-M. Bak, S. Yao, X. Hu, Z. Shadike, C.-L. Do-Thanh, F. Zhang, H. Chen, X. Lyu, K. Chen, Y. Zhu, X. Liu, P. Ouyang, J. Fu, S. Dai, ACS Catal. (2019). https://doi.org/10.1021/acscatal.8b03230

    Article  Google Scholar 

  38. S. Santra, D. Das, N.S. Das, K.K. Nanda, Chem. Sci. (2017). https://doi.org/10.1039/c7sc00162b

    Article  Google Scholar 

  39. N. Sahiner, A.O. Yasar, Ind. Eng. Chem. Res. (2016). https://doi.org/10.1021/acs.iecr.6b03089

    Article  Google Scholar 

  40. Y. Li, Q. Zhang, N. Zhang, L. Zhu, J. Zheng, B.H. Chen, Int. J. Hydrogen Energy (2013). https://doi.org/10.1016/j.ijhydene.2013.07.071

    Article  Google Scholar 

  41. Y. Wang, W. Meng, D. Wang, Z. Wang, K. Zou, Z. Cao, K. Zhang, S. Wu, G. Li, Int. J. Hydrogen Energy (2019). https://doi.org/10.1016/j.ijhydene.2019.07.068

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiming Jin.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 719 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, W., Jin, H., Gao, J. et al. Efficient hydrogen generation from the NaBH4 hydrolysis by amorphous Co–Mo–B alloy supported on reduced graphene oxide. Journal of Materials Research 36, 4154–4168 (2021). https://doi.org/10.1557/s43578-021-00374-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00374-4

Navigation