Skip to main content
Log in

Chemical vapor deposition of graphene by ethanol decomposition and its smooth transfer

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Graphene is indeed quite exciting, but commercial production remains a major challenge for manufacturers, especially when it comes to the production of high-quality sheets required for multiple purposes. There are still a number of questions to be answered related to the growth and transfer of graphene film. In this article, the author presents an improved and more successful growth and transfer process to increase the overall quality of the graphene film to be obtained on the target surfaces. The quality of as-grown and transferred graphene films was assessed by employing scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The tests on graphene films showed that the prepared layers were clean, smooth, uniform, and free from major macroscopic imperfections, and no impurities were added to the film even after the transfer process, confirming the effectiveness and cleanliness of the transfer process.

Graphic abstract

Graphene is indeed quite exciting, but commercial production remains a major challenge for manufacturers, especially when it comes to the production of high-quality sheets required for multiple purposes. In this article, the author presents an improved and more successful growth and transfer process to increase the overall quality of the graphene film to be obtained on the target surfaces. The studies on graphene films showed that the prepared layers were clean, smooth, uniform, and free from major macroscopic imperfections, and no impurities are added to graphene film even after the transfer process, confirming the effectiveness and cleanliness of the transfer process.

Improved wet chemical process

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. J. Ortiz Balbuena, P. Tutor De Ureta, E. Rivera Ruiz, S. Mellor Pita, Enfermedad de Vogt-Koyanagi-Harada. Med. Clin. Barc. 146(2), 93 (2016)

    Article  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197 (2005)

    Article  CAS  Google Scholar 

  3. C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: The new two-dimensional nanomaterial. Angew. Chemie - Int. Ed. 48(42), 7752 (2009)

    Article  CAS  Google Scholar 

  4. N. Tombros, C. Jozsa, M. Popinciuc, H.T. Jonkman, B.J. Van Wees, Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448(7153), 571 (2007)

    Article  CAS  Google Scholar 

  5. X. Wang, L. Zhi, K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323 (2008)

    Article  CAS  Google Scholar 

  6. M. Freitag, Graphene: Nanoelectronics goes flat out. Nat. Nanotechnol. 3(8), 455 (2008)

    Article  CAS  Google Scholar 

  7. C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, N. Alexei, M.E.H. Conrad, P.N. First, W.A. De Heer, Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108(52), 19912 (2004)

    Article  CAS  Google Scholar 

  8. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gunko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3(9), 563 (2008)

    Article  CAS  Google Scholar 

  9. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706 (2009)

    Article  CAS  Google Scholar 

  10. S.G. Benka, Two-dimensional atomic crystals. Phys. Today 58(9), 9 (2005)

    Article  Google Scholar 

  11. A. Reina, S. Thiele, X. Jia, S. Bhaviripudi, M.S. Dresselhaus, J.A. Schaefer, J. Kong, Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2(6), 509 (2009)

    Article  CAS  Google Scholar 

  12. L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.P. Ma, Z. Zhang, Q. Fu, L.M. Peng, X. Bao, H.M. Cheng, Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 3, 697 (2012)

    Article  CAS  Google Scholar 

  13. L. Meng, R. Wu, L. Zhang, L. Li, S. Du, Y. Wang, H.J. Gao, Multi-oriented moiré superstructures of graphene on Ir(111): Experimental observations and theoretical models. J. Phys. Condens. Matter 24(31), 1 (2012)

    Article  CAS  Google Scholar 

  14. L. Huang, W.Y. Xu, Y. De Que, Y. Pan, M. Gao, L. Da Pan, H.M. Guo, Y.L. Wang, S.X. Du, H.J. Gao, The influence of annealing temperature on the morphology of graphene islands. Chin. Phys. B 21(8), 88102 (2012)

    Article  CAS  Google Scholar 

  15. J. Hwang, M. Kim, H.Y. Cha, M.G. Spencer, J.W. Lee, Metal free growth of graphene on quartz substrate using chemical vapor deposition (CVD). J. Nanosci. Nanotechnol. 14(4), 2979 (2014)

    Article  CAS  Google Scholar 

  16. Y. Lu, Y. Huang, M. Zhang, Y. Chen, Nitrogen-doped graphene materials for supercapacitor applications. J. Nanosci. Nanotechnol. 14(2), 1134 (2014)

    Article  CAS  Google Scholar 

  17. A. Gnisci, G. Faggio, G. Messina, J. Kwon, J.Y. Lee, G.H. Lee, T. Dikonimos, N. Lisi, A. Capasso, Ethanol-CVD growth of sub-mm single-crystal graphene on flat Cu surfaces. J. Phys. Chem. C 122(50), 28830 (2018)

    Article  CAS  Google Scholar 

  18. S. Chaitoglou, E. Bertran, Control of the strain in chemical vapor deposition-grown graphene over copper via H2 flow. J. Phys. Chem. C 120, 25572 (2016)

    Article  CAS  Google Scholar 

  19. S. Chaitoglou, E. Bertran, Effect of temperature on graphene grown by chemical vapor deposition. J. Mater. Sci. 52, 8348 (2017)

    Article  CAS  Google Scholar 

  20. S. Chaitoglou, P. Tsipas, T. Speliotis, G. Kordas, A. Vavouliotis, A. Dimoulas, Insight and control of the chemical vapor deposition growth parameters and morphological characteristics of graphene/Mo2C heterostructures over liquid catalyst. J. Cryst. Growth 495, 46 (2018)

    Article  CAS  Google Scholar 

  21. S. Bhaviripudi, X. Jia, M.S. Dresselhaus, J. Kong, Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett. 10(10), 4128 (2010)

    Article  CAS  Google Scholar 

  22. A. Guermoune, T. Chari, F. Popescu, S.S. Sabri, J. Guillemette, H.S. Skulason, T. Szkopek, M. Siaj, Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon N. Y. 49(13), 4204 (2011)

    Article  CAS  Google Scholar 

  23. P. Zhao, A. Kumamoto, S. Kim, X. Chen, B. Hou, S. Chiashi, E. Einarsson, Y. Ikuhara, S. Maruyama, Self-limiting chemical vapor deposition growth of monolayer graphene from ethanol. J. Phys. Chem. C 117(20), 10755 (2013)

    Article  CAS  Google Scholar 

  24. X. Chen, P. Zhao, R. Xiang, S. Kim, J. Cha, S. Chiashi, S. Maruyama, Chemical vapor deposition growth of 5 mm hexagonal single-crystal graphene from ethanol. Carbon N. Y. 94, 810 (2015)

    Article  CAS  Google Scholar 

  25. I. Ruiz, W. Wang, A. George, C.S. Ozkan, M. Ozkan, Silicon oxide contamination of graphene sheets synthesized on copper substrates via chemical vapor deposition. Adv. Sci. Eng. Med. 6(10), 1070 (2014)

    Article  CAS  Google Scholar 

  26. G. van Tendeloo, J. van Landuyt, S. Amelinckx, The α → β phase transition in quartz and AlPO4 as studied by electron microscopy and diffraction. Phys. Status Solidi 33(2), 723 (1976)

    Article  Google Scholar 

  27. A.F. Wright, M.S. Lehmann, The structure of quartz at 25 and 590 °C determined by neutron diffraction. J. Solid State Chem. 36(3), 371 (1981)

    Article  CAS  Google Scholar 

  28. B.C. Bunker, Molecular mechanisms for corrosion of silica and silicate glasses. J. Non-Cryst. Solids 179, 300 (1994)

    Article  CAS  Google Scholar 

  29. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312 (2009)

    Article  CAS  Google Scholar 

  30. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colomba, R.S. Ruoff, Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9(12), 4359 (2009)

    Article  CAS  Google Scholar 

  31. A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C.W. Magnuson, S. McDonnell, L. Colombo, E.M. Vogel, R.S. Ruoff, R.M. Wallace, The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 99, 122108 (2011)

    Article  CAS  Google Scholar 

  32. J.H. Park, W. Jung, D. Cho, J.T. Seo, Y. Moon, S.H. Woo, C. Lee, C.Y. Park, J.R. Ahn, Simple, green, and clean removal of a poly(methyl methacrylate) film on chemical vapor deposited graphene. Appl. Phys. Lett. 103, 171609 (2013)

    Article  CAS  Google Scholar 

  33. X. Liang, B.A. Sperling, I. Calizo, G. Cheng, C.A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A.R.H. Walker, Z. Liu, L. Peng, C.A. Richter, Toward clean and crackless transfer of graphene. ACS Nano 5(11), 9144 (2011)

    Article  CAS  Google Scholar 

  34. I. Brückle, J. Thornton, K. Nichols, G. Strickler, Cyclododecane: Technical note on some uses in paper and objects conservation. J. Am. Inst. Conserv. 38(2), 162 (1999)

    Article  Google Scholar 

  35. D.S.L. Abergel, A. Russell, V.I. Fal’Ko, Visibility of graphene flakes on a dielectric substrate. Appl. Phys. Lett. 91, 063125 (2007)

    Article  CAS  Google Scholar 

  36. M. Asif, Y. Tan, L. Pan, J. Li, M. Rashad, M. Usman, Thickness controlled water vapors assisted growth of multilayer graphene by ambient pressure chemical vapor deposition. J. Phys. Chem. C 119(6), 3079 (2015)

    Article  CAS  Google Scholar 

  37. M. Losurdo, M.M. Giangregorio, P. Capezzuto, G. Bruno, Graphene CVD growth on copper and nickel: Role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys. 13(46), 20836 (2011)

    Article  CAS  Google Scholar 

  38. P. Figiel, M. Rozmus, B. Smuk, Properties of alumina ceramics obtained by conventional and non-conventional methods for sintering ceramics. J. Achiev. Mater. Manuf. Eng. 48(1), 29 (2011)

    Google Scholar 

  39. P.K. Panda, V.A. Jaleel, G. Lefebvre, Thermal shock study of α-alumina doped with 0.2% MgO. Mater. Sci. Eng. A 485(1–2), 558 (2008)

    Article  CAS  Google Scholar 

  40. J.C. Lascovich, R. Giorgi, S. Scaglione, Evaluation of the sp2/sp3 ratio in amorphous carbon structure by XPS and XAES. Appl. Surf. Sci. 47(1), 17 (1991)

    Article  CAS  Google Scholar 

  41. O.T. Ogurtani, D. Senyildiz, G. Cambaz Buke, Wrinkling of graphene because of the thermal expansion mismatch between graphene and copper. Surf. Interface Anal. 50(5), 547 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author (R. B) would like to acknowledge ENEA for providing the International Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Brajpuriya.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brajpuriya, R. Chemical vapor deposition of graphene by ethanol decomposition and its smooth transfer. Journal of Materials Research 36, 3258–3266 (2021). https://doi.org/10.1557/s43578-021-00365-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00365-5

Keywords

Navigation