Skip to main content

rGO–CMC fiber supercapacitors with core-sheath structure manufactured by coaxial extrusion printing

Abstract

Fiber-shaped supercapacitors are attractive as an energy storage unit due to their excellent flexibility. However, fabricating robust fibers with large yields remains a challenge. In this work, we prepare flexible core-sheath fibers via coaxial extrusion printing. Carboxymethylcellulose sodium salt (CMC) slurry with controlled rheological properties is extruded from the outer channel, while the graphene oxide (GO) slurry is extruded from the inner channel simultaneously. The followed freeze-drying process protects GO sheets from agglomeration, providing more efficient chemical reduction. The reduced GO (rGO) sheets are separated and expanded to fill in the CMC sheath, which eliminates the delamination between the CMC sheath and rGO core. We study the influences of the freeze-drying process on the fiber microstructures, and explore the slurry design, fiber quality, reduction condition, and electrochemical performance. The fabrication method allows scalable manufacturing of the core-sheath electrodes and fiber-shaped supercapacitors with more efficient conductive networks.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1.

    P. Chang, H. Mei, S. Zhou et al., J. Mater. Chem. A 7, 4230–4258 (2019)

    CAS  Article  Google Scholar 

  2. 2.

    M. Liao, L. Ye, Y. Zhang et al., Adv. Electron. Mater 5, 1800456 (2019)

    Article  Google Scholar 

  3. 3.

    Y. Zhou, C.H. Wang, W. Lu et al., Adv. Mater. 32, 1902779 (2020)

    CAS  Article  Google Scholar 

  4. 4.

    H. Xu, X. Hu, Y. Sun et al., Nano Res. 8, 1148–1158 (2015)

    CAS  Article  Google Scholar 

  5. 5.

    T.-T. Huang, W. Wu, J. Mater. Chem. A 7, 23280–23300 (2019)

    CAS  Article  Google Scholar 

  6. 6.

    G.D. Goh, Y.L. Yap, H. Tan et al., Crit. Rev. Solid State Mater. Sci. 45, 113–133 (2020)

    CAS  Article  Google Scholar 

  7. 7.

    P. Li, W. Wu, J. Xu et al., Sens. Actuators A 303, 111840 (2020)

    CAS  Article  Google Scholar 

  8. 8.

    Y. Hong, X.-L. Cheng, G.-J. Liu et al., Chin. J. Polym. Sci. 37, 737–743 (2019)

    CAS  Article  Google Scholar 

  9. 9.

    Y. Zhou, C.H. Wang, W. Lu et al., Adv. Mater. 32, e1902779 (2020)

    Article  Google Scholar 

  10. 10.

    M. Zhang, M. Zhao, M. Jian et al., Matter 1, 168–179 (2019)

    Article  Google Scholar 

  11. 11.

    L. Kou, T. Huang, B. Zheng et al., Nat. Commun. 5, 1–10 (2014)

    Article  Google Scholar 

  12. 12.

    C.M. Das, L. Kang, Q. Ouyang et al., InfoMat 2, 698–714 (2020)

    CAS  Article  Google Scholar 

  13. 13.

    S.N. Alam, N. Sharma, L. Kumar, Graphene 06, 1–18 (2017)

    CAS  Article  Google Scholar 

  14. 14.

    F. Del Giudice, A.Q. Shen, Curr. Opin. Chem. Eng. 16, 23–30 (2017)

    Article  Google Scholar 

  15. 15.

    R. Wang, Y. Wang, C. Xu et al., RSC Adv. 3, 1194–1200 (2013)

    Article  Google Scholar 

  16. 16.

    Z. Zhang, T. Guan, X. Zhang, et al., Ind. Eng. Chem. Res. 60, 8753–8761 (2021)

    CAS  Article  Google Scholar 

  17. 17.

    T. Liu, W. Wu, K.-N. Liao et al., Carbohydr. Polym. 214, 213–220 (2019)

    CAS  Article  Google Scholar 

  18. 18.

    S. Zhai, H.E. Karahan, L. Wei et al., Energy Storage Mater. 9, 221–228 (2017)

    Article  Google Scholar 

  19. 19.

    N. Wang, G. Han, Y. Xiao et al., Electrochim. Acta 270, 490–500 (2018)

    CAS  Article  Google Scholar 

  20. 20.

    Z. Yang, W. Zhao, Y. Niu et al., Carbon 132, 241–248 (2018)

    CAS  Article  Google Scholar 

  21. 21.

    P. Song, B. Liu, C. Liang et al., Nano-micro Lett. 13, 1–17 (2021)

    CAS  Article  Google Scholar 

  22. 22.

    J.P. Lewicki, J.N. Rodriguez, C. Zhu et al., Sci. Rep. 7, 1–14 (2017)

    Article  Google Scholar 

  23. 23.

    Y. Yang, S. Song, Z. Zhao, Colloids Surf. A 513, 315–324 (2017)

    CAS  Article  Google Scholar 

  24. 24.

    C. Wang, X. Chen, B. Wang et al., ACS Nano 12, 5816–5825 (2018)

    CAS  Article  Google Scholar 

  25. 25.

    A. Gholampour, M. ValizadehKiamahalleh, D.N. Tran et al., ACS Appl. Mater. Interfaces 9, 43275–43286 (2017)

    CAS  Article  Google Scholar 

  26. 26.

    P.-G. Ren, D.-X. Yan, X. Ji et al., Nanotechnology 22, 055705 (2010)

    Article  Google Scholar 

  27. 27.

    S. Chen, R. Ding, X. Ma et al., Polymers 8, 78 (2016)

    Article  Google Scholar 

  28. 28.

    Q. Yin, D. Li, J. Zhang et al., J. Alloys Compd. 813, 152187 (2020)

    CAS  Article  Google Scholar 

  29. 29.

    W. Ma, S. Chen, S. Yang et al., ACS Appl. Mater. Interfaces 8, 14622–14627 (2016)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work is supported in New York State College of Ceramics at Alfred University.

Funding

Faculty Startup Fund in New York State College of Ceramics at Alfred University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Junjun Ding.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Ding, J. rGO–CMC fiber supercapacitors with core-sheath structure manufactured by coaxial extrusion printing. Journal of Materials Research (2021). https://doi.org/10.1557/s43578-021-00357-5

Download citation

Keywords

  • Energy storage
  • Extrusion
  • Flexible
  • Fiber
  • Freeze drying