Abstract
Ferromagnetic resonance was used to study the temperature dependence of mixed manganese-cobalt ferrite nanoparticles with a size range between 5 and 42 nm synthesized by the hydrothermal method. Structural characterization was carried out using X-ray diffraction, scanning, and transmission electron microscopy. M(H) curves as a function of the Mn2+ content at 2.5 and 300 K, and FMR in the temperature range of 80 < T < 700 K were used for the magnetic characterization. Temperature dependence of the resonance field shows three regions that can be interpreted in terms of agglomeration, dispersion and superparamagnetism in the samples. The HR and \({\Delta H}_{\text{PP}}\) as a function of the temperature and Mn2+ content allows us to elucidate the key characteristics of the deviation from the ideal superparamagnetic behavior observed by magnetic measurements and open up new research possibilities for evaluating interparticle interactions in nanoparticles.
Graphic abstract
Similar content being viewed by others
References
S. Nasrin, F.U.Z. Chowdhury, S.M. Hoque, Study of hyperthermia temperature of manganese-substituted cobalt nano ferrites prepared by chemical co-precipitation method for biomedical application. J. Magn. Magn. Mater. 479, 126–134 (2019). https://doi.org/10.1016/j.jmmm.2019.02.010
L.S. Ghadimi, N. Arsalani, I. Ahadzadeh, A. Hajalilou, E. Abouzari-Lotf, Effect of synthesis route on the electrochemical performance of CoMnFeO nanoparticles as a novel supercapacitor electrode material. Appl. Surf. Sci. 494, 440–451 (2019). https://doi.org/10.1016/j.apsusc.2019.07.183
S.M. Ansari, K.C. Ghosh, R.S. Devan, D. Sen, P.U. Sastry, Y.D. Kolekar, C.V. Ramana, Eco-friendly synthesis, crystal chemistry, and magnetic properties of manganese-substituted CoFe2O4 nanoparticles. ACS Omega 5(31), 19315–19330 (2020). https://doi.org/10.1021/acsomega.9b02492
R. Topkaya, Ö. Akman, S. Kazan, B. Aktas, Z. Durmus, A. Baykal, Surface spin disorder and spin-glass-like behaviour in manganese-substituted cobalt ferrite nanoparticles. J. Nanopart. Res. 14, 1156 (2012)
P. Monisha, P. Priyadharshini, S.S. Gomathi, K. Pushpanathan, Influence of Mn dopant on the crystallite size, optical and magnetic behavior of CoFe2O4 magnetic nanoparticles. J. Phys. Chem. Solids 148, 109654 (2021)
S. Asiri, M. Sertkol, S. Guner, H. Gungunes, K.M. Batoo, T.A. Saleh, H. Sozeri, M.A. Almessiere, A. Manikandan, A. Baykal, Hydrothermal synthesis of CoyZnyMn1–2yFe2O4 nanoferrites: magneto-optical investigation. Ceram. Int. 18(5), 5751–5759 (2018). https://doi.org/10.1016/j.ceramint.2017.12.233
S.S. Desai, S.E. Shirsath, K.M. Batoo, S.F. Adil, M. Khan, S.M. Patange, Influence of Zn-Zr substitution on the crystal chemistry and magnetic properties of CoFe2O4 nanoparticles synthesized by sol-gel method. Phys. B 596, 412400 (2020). https://doi.org/10.1016/j.physb.2020.412400
K.M. Batoo, E.H. Raslan, Y. Yang, S.F. Adil, M. Khan, A. Imran, Y. Al-Douri, Structural, dielectric and low temperature magnetic response of Zn doped cobalt ferrite nanoparticles. AIP Adv. 9, 055202 (2019). https://doi.org/10.1063/1.5078411
N. Boda, K.C. Naidu, K.M. Batoo, G.H. Joice, J.L. Naik, D. Ravinder, Structural, morphological and electronic properties of cadmium cobalt ferrite nanoparticles. Biointerface Res. Appl. Chem. 10(1), 4752–4763 (2020). https://doi.org/10.33263/BRIAC101.752763
A. Jamil, M.F. Afsar, F. Sher, M.A. Rafiq, Temperature and composition-dependent density of states extracted using overlapping large polaron tunneling model in MnxCo1 xFe2O4 (x = 0.25, 0.5, 0.75) nanoparticles. Phys. B 509, 76–83 (2017)
M.M. Hossen, S. Nasrin, M.B. Hossen, Structural, dielectric and magnetic properties of Mn2+ doped cobalt ferrite nanoparticles. J. Magn. Magn. Mater 599, 165726 (2019)
R. Rai, K. Verma, S. Sharma, S.S. Nair, M.A. Valente, A.L. Kholkin, N.A. Sobolev, Study of structural and ferromagnetic properties of pure and Cd doped copper ferrite. J. Phys. Chem. Solids 72(7), 862–868 (2011). https://doi.org/10.1016/j.jpcs.2011.04.002
H. Bayrakdar, O. Yalçın, U. Cengiz, S. Özüm, E. Anigi, O. Topel, Comparison effects and electron spin resonance studies of α-Fe2O4 spinel-type ferrite nanoparticles. Spectrochim. Acta A 374, 696–702 (2014)
M.R. Diehl, J.Y. Yu, J.R. Heath, G.A. Held, H. Doyle, S. Sun, C. Murray, Crystalline, shape and surface anisotropy in two morphologies of superparamagnetic cobalt nanoparticles by ferromagnetic resonance. J. Phys. Chem. 33, 7913–7919 (2001)
A.B. Salunkhe, V.M. Khot, M.R. Phadatare, N.D. Thorat, R.S. Joshi, H.M. Yadav, S.H. Pawar, Low temperature combustion synthesis and magnetostructural properties of Co-Mn nanoferrites. J. Magn. Magn. Mater. 352(1), 91–98 (2014). https://doi.org/10.1016/j.jmmm.2013.09.020
M.K. Shobana, S. Sankar, Characterization of sol-gel-prepared nanoferrites. J. Magn. Magn. Mater. 321(6), 599–601 (2009). https://doi.org/10.1016/j.jmmm.2008.09.040
R.H. Kodama, A.E. Berkowitz, E.J. McNiff Jr., S. Foner, Surface spin disorder in NiFe2O4 nanoparticles. Phys. Rev. Lett. 77(2), 394–397 (1996)
B. Martínez, X. Obradors, L. Balcells, A. Rouanet, C. Monty, Low-temperature surface spin-glass transition in γ-Fe2O3 nanoparticles. Phys. Rev. Lett. 80(1), 181–184 (1998)
Y. Köseoglu, H. Kavas, Size and surface effects on magnetic properties of Fe3O4 nanoparticles. J. Nanosci. Nanotechnol. 8, 584 (2008)
S.D. Bhame, P.A. Joy, Tuning of the magnetostrictive properties of CoFe2O4 by Mn substitution for Co. J. Appl. Phys. 100, 113911 (2006)
R.C. Kambale, P.A. Shaikh, N.S. Harale, V.A. Bilur, Y.D. Kolekar, C.H. Bhosale, K.Y. Rajpure, Structural and magnetic properties of Co1-xMnxFe2O4(0 {<=} x {<=} 0.4) spinel ferrites synthesized by combustion route. J Alloys Compd 490(1–2), 568–571 (2010). https://doi.org/10.1016/j.jallcom.2009.10.082
M. Angelakeris, Magnetic nanoparticles: a multifunctional vehicle for modern theranostics. Biochim. Biophys. Acta - Gen. Subj. 1861(6), 1642–1651 (2017)
A. Mumtaz, K. Maaz, B. Janjua, S.K. Hasanain, M.F. Bertino, Exchange bias and vertical shift in CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 313(2), 266–272 (2007). https://doi.org/10.1016/j.jmmm.2007.01.007
K.M. Batoo, D. Salah, G. Kumar, A. Kumar, M. Singh, M. Abd El-Sadek, F.A. Mir, A. Imran, D.A. Jameel, Hyperfine interaction and tuning of magnetic anisotropy of cu doped CoFe2O4 ferritenanoparticles. J. Magn. Magn. Mater. 411, 91–97 (2016). https://doi.org/10.1016/j.jmmm.2016.03.058
M. Tachiki, Origin of the magnetic anisotropy energy of cobalt ferrite. Prog. Theor. Phys. 23, 1055 (1960)
G. Dixit, J.P. Singh, R.C. Srivastava, H.M. Agrawal, Magnetic resonance study of Ce and Gd doped NiFe2O4. J. Magn. Magn. Mater. 324(4), 479–483 (2014)
E. de Biasi, C.A. Ramos, R.D. Zysler, Size and anisotropy determination by ferromagnetic resonance in dispersed magnetic nanoparticle systems. J. Magn. Magn. Mater. 262(2), 235–241 (2003)
J. Typek, K. Wardal, N. Guskos, D. Sibera, U. Narkiewicz, FMR and magnetization study of ZnFe2O4 nanoparticles in 0.40Fe2O3/0.60ZnO nanocomposite. IEEE J. Magn. Mater. 50, 6101606 (2014)
D. Shi, B. Aktas, B. Pust, F. Mikailov, Nanostructured Magnetic Materials, and Their Applications (Springer- Verlag Inc., New York, 2003)
C. Vittoria, C.M. Williams, Ferrimagnetic resonance linewidth in single crystal MnZn-Ferrite. J. Magn. Magn. Mater. 54–57(3), 1193–1194 (1986)
H.H. Hamdeh, J.C. Ho, S.A. Oliver, R.J. Willey, G. Oliveri, G. Busca, Magnetic properties of partially-inverted zinc ferrite aerogel powders. Phys. J. Appl. 81, 1851 (1997)
G. Vázquez-Victorio, U. Acevedo-Salas, R. Valenzuela, in Ferromagnetic Resonance - Theory and Applications, ed. By O. Yalçin (IntechOpen, 2013), p. 169
L. Arda, M. Acikgoz, N. Doǧan, D. Akcan, O. Cakiroglu, Synthesis, characterization and ESR studies of Zn1−xCoxO nanoparticles. J. Supercond. Nov. Magn. 27, 799 (2014)
Acknowledgments
Thanks to the FONACIT for the financing of the PEII 2011001368 and MPPCTI- ECOS-Nord (V13PS01). The authors thank the CNRS, the University of Montpellier, and the Venezuelan Institute for Scientific Research (IVIC) for financial support. We also thank the Platform of Analysis and Characterizations of ICGM for measurements.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Sánchez, Y., Briceño, S., Larionova, J. et al. Temperature dependence of the ferromagnetic resonance (FMR) for MnxCo1−xFe2O4 (0 ≤ x ≤ 1) nanoparticles. Journal of Materials Research 36, 3329–3338 (2021). https://doi.org/10.1557/s43578-021-00345-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43578-021-00345-9