Skip to main content
Log in

Temperature dependence of the ferromagnetic resonance (FMR) for MnxCo1−xFe2O4 (0 ≤ x ≤ 1) nanoparticles

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ferromagnetic resonance was used to study the temperature dependence of mixed manganese-cobalt ferrite nanoparticles with a size range between 5 and 42 nm synthesized by the hydrothermal method. Structural characterization was carried out using X-ray diffraction, scanning, and transmission electron microscopy. M(H) curves as a function of the Mn2+ content at 2.5 and 300 K, and FMR in the temperature range of 80 < T < 700 K were used for the magnetic characterization. Temperature dependence of the resonance field shows three regions that can be interpreted in terms of agglomeration, dispersion and superparamagnetism in the samples. The HR and \({\Delta H}_{\text{PP}}\) as a function of the temperature and Mn2+ content allows us to elucidate the key characteristics of the deviation from the ideal superparamagnetic behavior observed by magnetic measurements and open up new research possibilities for evaluating interparticle interactions in nanoparticles.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. S. Nasrin, F.U.Z. Chowdhury, S.M. Hoque, Study of hyperthermia temperature of manganese-substituted cobalt nano ferrites prepared by chemical co-precipitation method for biomedical application. J. Magn. Magn. Mater. 479, 126–134 (2019). https://doi.org/10.1016/j.jmmm.2019.02.010

    Article  CAS  Google Scholar 

  2. L.S. Ghadimi, N. Arsalani, I. Ahadzadeh, A. Hajalilou, E. Abouzari-Lotf, Effect of synthesis route on the electrochemical performance of CoMnFeO nanoparticles as a novel supercapacitor electrode material. Appl. Surf. Sci. 494, 440–451 (2019). https://doi.org/10.1016/j.apsusc.2019.07.183

    Article  CAS  Google Scholar 

  3. S.M. Ansari, K.C. Ghosh, R.S. Devan, D. Sen, P.U. Sastry, Y.D. Kolekar, C.V. Ramana, Eco-friendly synthesis, crystal chemistry, and magnetic properties of manganese-substituted CoFe2O4 nanoparticles. ACS Omega 5(31), 19315–19330 (2020). https://doi.org/10.1021/acsomega.9b02492

    Article  CAS  Google Scholar 

  4. R. Topkaya, Ö. Akman, S. Kazan, B. Aktas, Z. Durmus, A. Baykal, Surface spin disorder and spin-glass-like behaviour in manganese-substituted cobalt ferrite nanoparticles. J. Nanopart. Res. 14, 1156 (2012)

    Article  CAS  Google Scholar 

  5. P. Monisha, P. Priyadharshini, S.S. Gomathi, K. Pushpanathan, Influence of Mn dopant on the crystallite size, optical and magnetic behavior of CoFe2O4 magnetic nanoparticles. J. Phys. Chem. Solids 148, 109654 (2021)

    Article  CAS  Google Scholar 

  6. S. Asiri, M. Sertkol, S. Guner, H. Gungunes, K.M. Batoo, T.A. Saleh, H. Sozeri, M.A. Almessiere, A. Manikandan, A. Baykal, Hydrothermal synthesis of CoyZnyMn1–2yFe2O4 nanoferrites: magneto-optical investigation. Ceram. Int. 18(5), 5751–5759 (2018). https://doi.org/10.1016/j.ceramint.2017.12.233

    Article  CAS  Google Scholar 

  7. S.S. Desai, S.E. Shirsath, K.M. Batoo, S.F. Adil, M. Khan, S.M. Patange, Influence of Zn-Zr substitution on the crystal chemistry and magnetic properties of CoFe2O4 nanoparticles synthesized by sol-gel method. Phys. B 596, 412400 (2020). https://doi.org/10.1016/j.physb.2020.412400

    Article  CAS  Google Scholar 

  8. K.M. Batoo, E.H. Raslan, Y. Yang, S.F. Adil, M. Khan, A. Imran, Y. Al-Douri, Structural, dielectric and low temperature magnetic response of Zn doped cobalt ferrite nanoparticles. AIP Adv. 9, 055202 (2019). https://doi.org/10.1063/1.5078411

    Article  CAS  Google Scholar 

  9. N. Boda, K.C. Naidu, K.M. Batoo, G.H. Joice, J.L. Naik, D. Ravinder, Structural, morphological and electronic properties of cadmium cobalt ferrite nanoparticles. Biointerface Res. Appl. Chem. 10(1), 4752–4763 (2020). https://doi.org/10.33263/BRIAC101.752763

    Article  CAS  Google Scholar 

  10. A. Jamil, M.F. Afsar, F. Sher, M.A. Rafiq, Temperature and composition-dependent density of states extracted using overlapping large polaron tunneling model in MnxCo1 xFe2O4 (x = 0.25, 0.5, 0.75) nanoparticles. Phys. B 509, 76–83 (2017)

    Article  CAS  Google Scholar 

  11. M.M. Hossen, S. Nasrin, M.B. Hossen, Structural, dielectric and magnetic properties of Mn2+ doped cobalt ferrite nanoparticles. J. Magn. Magn. Mater 599, 165726 (2019)

    Google Scholar 

  12. R. Rai, K. Verma, S. Sharma, S.S. Nair, M.A. Valente, A.L. Kholkin, N.A. Sobolev, Study of structural and ferromagnetic properties of pure and Cd doped copper ferrite. J. Phys. Chem. Solids 72(7), 862–868 (2011). https://doi.org/10.1016/j.jpcs.2011.04.002

    Article  CAS  Google Scholar 

  13. H. Bayrakdar, O. Yalçın, U. Cengiz, S. Özüm, E. Anigi, O. Topel, Comparison effects and electron spin resonance studies of α-Fe2O4 spinel-type ferrite nanoparticles. Spectrochim. Acta A 374, 696–702 (2014)

    Google Scholar 

  14. M.R. Diehl, J.Y. Yu, J.R. Heath, G.A. Held, H. Doyle, S. Sun, C. Murray, Crystalline, shape and surface anisotropy in two morphologies of superparamagnetic cobalt nanoparticles by ferromagnetic resonance. J. Phys. Chem. 33, 7913–7919 (2001)

    Article  CAS  Google Scholar 

  15. A.B. Salunkhe, V.M. Khot, M.R. Phadatare, N.D. Thorat, R.S. Joshi, H.M. Yadav, S.H. Pawar, Low temperature combustion synthesis and magnetostructural properties of Co-Mn nanoferrites. J. Magn. Magn. Mater. 352(1), 91–98 (2014). https://doi.org/10.1016/j.jmmm.2013.09.020

    Article  CAS  Google Scholar 

  16. M.K. Shobana, S. Sankar, Characterization of sol-gel-prepared nanoferrites. J. Magn. Magn. Mater. 321(6), 599–601 (2009). https://doi.org/10.1016/j.jmmm.2008.09.040

    Article  CAS  Google Scholar 

  17. R.H. Kodama, A.E. Berkowitz, E.J. McNiff Jr., S. Foner, Surface spin disorder in NiFe2O4 nanoparticles. Phys. Rev. Lett. 77(2), 394–397 (1996)

    Article  CAS  Google Scholar 

  18. B. Martínez, X. Obradors, L. Balcells, A. Rouanet, C. Monty, Low-temperature surface spin-glass transition in γ-Fe2O3 nanoparticles. Phys. Rev. Lett. 80(1), 181–184 (1998)

    Article  Google Scholar 

  19. Y. Köseoglu, H. Kavas, Size and surface effects on magnetic properties of Fe3O4 nanoparticles. J. Nanosci. Nanotechnol. 8, 584 (2008)

    Article  CAS  Google Scholar 

  20. S.D. Bhame, P.A. Joy, Tuning of the magnetostrictive properties of CoFe2O4 by Mn substitution for Co. J. Appl. Phys. 100, 113911 (2006)

    Article  CAS  Google Scholar 

  21. R.C. Kambale, P.A. Shaikh, N.S. Harale, V.A. Bilur, Y.D. Kolekar, C.H. Bhosale, K.Y. Rajpure, Structural and magnetic properties of Co1-xMnxFe2O4(0 {<=} x {<=} 0.4) spinel ferrites synthesized by combustion route. J Alloys Compd 490(1–2), 568–571 (2010). https://doi.org/10.1016/j.jallcom.2009.10.082

    Article  CAS  Google Scholar 

  22. M. Angelakeris, Magnetic nanoparticles: a multifunctional vehicle for modern theranostics. Biochim. Biophys. Acta - Gen. Subj. 1861(6), 1642–1651 (2017)

    Article  CAS  Google Scholar 

  23. A. Mumtaz, K. Maaz, B. Janjua, S.K. Hasanain, M.F. Bertino, Exchange bias and vertical shift in CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 313(2), 266–272 (2007). https://doi.org/10.1016/j.jmmm.2007.01.007

    Article  CAS  Google Scholar 

  24. K.M. Batoo, D. Salah, G. Kumar, A. Kumar, M. Singh, M. Abd El-Sadek, F.A. Mir, A. Imran, D.A. Jameel, Hyperfine interaction and tuning of magnetic anisotropy of cu doped CoFe2O4 ferritenanoparticles. J. Magn. Magn. Mater. 411, 91–97 (2016). https://doi.org/10.1016/j.jmmm.2016.03.058

    Article  CAS  Google Scholar 

  25. M. Tachiki, Origin of the magnetic anisotropy energy of cobalt ferrite. Prog. Theor. Phys. 23, 1055 (1960)

    Article  CAS  Google Scholar 

  26. G. Dixit, J.P. Singh, R.C. Srivastava, H.M. Agrawal, Magnetic resonance study of Ce and Gd doped NiFe2O4. J. Magn. Magn. Mater. 324(4), 479–483 (2014)

    Article  CAS  Google Scholar 

  27. E. de Biasi, C.A. Ramos, R.D. Zysler, Size and anisotropy determination by ferromagnetic resonance in dispersed magnetic nanoparticle systems. J. Magn. Magn. Mater. 262(2), 235–241 (2003)

    Article  CAS  Google Scholar 

  28. J. Typek, K. Wardal, N. Guskos, D. Sibera, U. Narkiewicz, FMR and magnetization study of ZnFe2O4 nanoparticles in 0.40Fe2O3/0.60ZnO nanocomposite. IEEE J. Magn. Mater. 50, 6101606 (2014)

    Google Scholar 

  29. D. Shi, B. Aktas, B. Pust, F. Mikailov, Nanostructured Magnetic Materials, and Their Applications (Springer- Verlag Inc., New York, 2003)

    Google Scholar 

  30. C. Vittoria, C.M. Williams, Ferrimagnetic resonance linewidth in single crystal MnZn-Ferrite. J. Magn. Magn. Mater. 54–57(3), 1193–1194 (1986)

    Article  Google Scholar 

  31. H.H. Hamdeh, J.C. Ho, S.A. Oliver, R.J. Willey, G. Oliveri, G. Busca, Magnetic properties of partially-inverted zinc ferrite aerogel powders. Phys. J. Appl. 81, 1851 (1997)

    Article  CAS  Google Scholar 

  32. G. Vázquez-Victorio, U. Acevedo-Salas, R. Valenzuela, in Ferromagnetic Resonance - Theory and Applications, ed. By O. Yalçin (IntechOpen, 2013), p. 169

  33. L. Arda, M. Acikgoz, N. Doǧan, D. Akcan, O. Cakiroglu, Synthesis, characterization and ESR studies of Zn1−xCoxO nanoparticles. J. Supercond. Nov. Magn. 27, 799 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to the FONACIT for the financing of the PEII 2011001368 and MPPCTI- ECOS-Nord (V13PS01). The authors thank the CNRS, the University of Montpellier, and the Venezuelan Institute for Scientific Research (IVIC) for financial support. We also thank the Platform of Analysis and Characterizations of ICGM for measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Silva.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1137 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez, Y., Briceño, S., Larionova, J. et al. Temperature dependence of the ferromagnetic resonance (FMR) for MnxCo1−xFe2O4 (0 ≤ x ≤ 1) nanoparticles. Journal of Materials Research 36, 3329–3338 (2021). https://doi.org/10.1557/s43578-021-00345-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00345-9

Keywords

Navigation