Skip to main content
Log in

The deformation mechanisms and mechanical properties of Cu/Fe multilayer during compression process

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The deformation mechanisms and mechanical properties of Cu/Fe multilayer during compression process are investigated via atomistic simulations and rationalized analysis. It is found that yield stress and strain of Kurdjumov–Sachs model are lower than that of Nishiyama–Wassermann model, and lattice dislocation nucleates from periodic arrangement structures on the interface. We present that preferred slip systems are dominated not only by Schmidt factors but also by intersection line orientations of slip system on the interface, as well as angles between activated slip system of Cu layer and slip system of Fe layer. During deformation process, extended full dislocation dominates deformation behavior of Cu layer, and perfect dislocation and twinning dominate deformation behavior of Fe layer. After deformation, tetrahedral structures and point defects form on Cu side of interface and inside Fe layer, respectively. We calculate evolution curves for number of dislocation segments and interface thickness to illuminate deformation behavior.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. J. Li, Y. Chen, S. Xue, H. Wang, X. Zhang, Comparison of size dependent strengthening mechanisms in Ag/Fe and Ag/Ni multilayers. Acta Mater. 114, 154 (2016)

    Article  CAS  Google Scholar 

  2. M. Callisti, T. Polcar, Combined size and texture-dependent deformation and strengthening mechanisms in Zr/Nb nano-multilayers. Acta Mater. 124, 247 (2017)

    Article  CAS  Google Scholar 

  3. Y.F. Zhang, R. Su, T.J. Niu, N.A. Richter, S. Xue, Q. Li, J. Ding, B. Yang, H. Wang, X. Zhang, Thermal stability and deformability of annealed nanotwinned Al/Ti multilayers . Scr. Mater. 186, 219 (2020)

    Article  CAS  Google Scholar 

  4. S.J. Zheng, I.J. Beyerlein, J.S. Carpenter, K. Kang, J. Wang, W.Z. Han, N.A. Mara, High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nat. Commun. 4(1), 1–8 (2013)

    Article  CAS  Google Scholar 

  5. Q. Zhou, P. Huang, M.B. Liu, F. Wang, K.W. Xu, T.J. Lu, Grain and interface boundaries governed strengthening mechanisms in metallic multilayers. J. Alloy Compds. 698, 906 (2017)

    Article  CAS  Google Scholar 

  6. X.F. Kong, I.J. Beyerlein, Z.R. Liu, B.N. Yao, D. Legut, T.C. Germann, R.F. Zhang, Stronger and more failure-resistant with three-dimensional serrated bimetal interfaces. Acta Mater. 166, 231 (2019)

    Article  CAS  Google Scholar 

  7. N. Abdolrahim, H.M. Zbib, D.F. Bahr, Multiscale modeling and simulation of deformation in nanoscale metallic multilayer systems. Int. J. Plast. 52, 33 (2014)

    Article  CAS  Google Scholar 

  8. R.F. Zhang, T.C. Germann, X.Y. Liu, J. Wang, I.J. Beyerlein, Layer size effect on the shock compression behavior of fcc–bcc nanolaminates. Acta Mater. 79, 74 (2014)

    Article  CAS  Google Scholar 

  9. L. Lu, C. Huang, W.L. Pi, H.G. Xiang, F.S. Gao, T. Fu, X.H. Peng, Molecular dynamics simulation of effects of interface imperfections and modulation periods on Cu/Ta multilayers. Comput. Mater. Sci. 143, 63 (2018)

    Article  CAS  Google Scholar 

  10. X. Tian, J.Z. Cui, M. Yang, K.P. Ma, M.Z. Xiang, Molecular dynamics simulations on shock response and spalling behaviors of semi-coherent 111 Cu-Al multilayers. Int. J. Mech. Sci. 172, 105414 (2020)

    Article  Google Scholar 

  11. Y. Liu, Y. Chen, K.Y. Yu, H. Wang, J. Chen, X. Zhang, Stacking fault and partial dislocation dominated strengthening mechanisms in highly textured Cu/Co multilayers. Int. J. Plast. 49, 152 (2013)

    Article  CAS  Google Scholar 

  12. W.Z. Han, E.K. Cerreta, N.A. Mara, I.J. Beyerlein, J.S. Carpenter, S.J. Zheng, C.P. Trujillo, P.O. Dickerson, A. Misra, Deformation and failure of shocked bulk Cu–Nb nanolaminates. Acta Mater. 63, 150 (2014)

    Article  CAS  Google Scholar 

  13. W. Yang, G. Ayoub, I. Salehinia, B. Mansoor, H. Zbib, Multiaxial tension/compression asymmetry of Ti/TiN nano laminates: MD investigation. Acta Mater. 135, 348 (2017)

    Article  CAS  Google Scholar 

  14. Y. Chen, S. Shao, X.Y. Liu, S.K. Yadav, N. Li, N. Mara, J. Wang, Misfit dislocation patterns of Mg-Nb interfaces. Acta Mater. 126, 552 (2017)

    Article  CAS  Google Scholar 

  15. F.S. Gao, X.H. Peng, C. Huang, X. Yue, B. Yang, S. Sun, T. Fu, Modulation period dependent mechanical properties of Cu/Fe metallic multilayered films. AIP Adv. 8, 045208 (2018)

    Article  CAS  Google Scholar 

  16. Y. Liu, D. Bufford, H. Wang, C. Sun, X. Zhang, Mechanical properties of highly textured Cu/Ni multilayers. Acta Mater. 59(5), 1924 (2011)

    Article  CAS  Google Scholar 

  17. S. Shao, J. Wang, I.J. Beyerlein, A. Misra, Glide dislocation nucleation from dislocation nodes at semi-coherent 1 1 1 Cu–Ni interfaces. Acta Mater. 98, 206 (2015)

    Article  CAS  Google Scholar 

  18. S. Shao, F. Akasheh, J. Wang, Y. Liu, Alternative misfit dislocations pattern in semi-coherent FCC 100 interfaces. Acta Mater. 144, 177 (2018)

    Article  CAS  Google Scholar 

  19. D.L. Zheng, S.D. Chen, A.K. Soh, Y. Ma, Molecular dynamics simulations of glide dislocations induced by misfit dislocations at the Ni/Al interface. Comput. Mater. Sci. 48(3), 551 (2010)

    Article  CAS  Google Scholar 

  20. H.G. Xiang, H.T. Li, T. Fu, W.B. Zhu, C. Huang, B. Yang, X.H. Peng, Shock-induced stacking fault pyramids in Ni/Al multilayers. Appl. Surf. Sci. 427, 219 (2018)

    Article  CAS  Google Scholar 

  21. C. Lv, J. Yang, X.P. Zhang, Y. Cai, X.Y. Liu, G.J. Wang, S.-N. Luo, Interfacial effect on deformation and failure of Al/Cu nanolaminates under shear loading. J. Phys. D 51(33), 335301 (2018)

    Article  CAS  Google Scholar 

  22. I. Salehinia, J. Wang, D.F. Bahr, H.M. Zbib, Molecular dynamics simulations of plastic deformation in Nb/NbC multilayers . Int. J. Plast. 59, 119 (2014)

    Article  CAS  Google Scholar 

  23. D. Bhattacharyya, N.A. Mara, R.G. Hoagland, A. Misra, Nanoindentation and microstructural studies of Al/TiN multilayers with unequal volume fractions. Scr. Mater. 58(11), 981 (2008)

    Article  CAS  Google Scholar 

  24. S. Zheng, J.S. Carpenter, R.J. McCabe, I.J. Beyerlein, N.A. Mara, Engineering interface structures and thermal stabilities via SPD processing in bulk nanostructured metals. Sci. Rep. 4(1), 1–6 (2014)

    Article  Google Scholar 

  25. J. Wang, R.F. Zhang, C.Z. Zhou, I.J. Beyerlein, A. Misra, Interface dislocation patterns and dislocation nucleation in face-centered-cubic and body-centered-cubic bicrystal interfaces . Int. J. Plast. 53, 40 (2014)

    Article  CAS  Google Scholar 

  26. R.F. Zhang, J. Wang, I.J. Beyerlein, A. Misra, T.C. Germann, Atomic-scale study of nucleation of dislocations from fcc-bcc interfaces. Acta Mater. 60, 2855 (2012)

    Article  CAS  Google Scholar 

  27. J.T. Avallone, T.J. Nizolek, B.B. Bales, T.M. Pollock, Creep resistance of bulk copper–niobium composites: an inverse effect of multilayer length scale. Acta Mater. 176, 189 (2019)

    Article  CAS  Google Scholar 

  28. J. Chen, S.N. Mathaudhu, N. Thadhani, A.M. Dongare, Correlations between dislocation density evolution and spall strengths of Cu/Ta multilayered systems at the atomic scales: the role of spacing of KS interfaces. Materialia 5, 100192 (2019)

    Article  CAS  Google Scholar 

  29. Q. Guo, J.R. Greer, Compressive properties of interface-containing Cu–Fe nano-pillars. Scr. Mater. 66(5), 272–275 (2012)

    CAS  Google Scholar 

  30. Y. Chen, Y. Liu, C. Sun, K.Y. Yu, M. Song, H. Wang, X. Zhang, Microstructure and strengthening mechanisms in Cu/Fe multilayers. Acta Mater. 60(18), 6312 (2012)

    Article  CAS  Google Scholar 

  31. J.T. Wang, C.H. Yang, P.D. Hodgson, Extrinsic size effect in microcompression of polycrystalline Cu/Fe multilayers. Scr. Mater. 69(8), 626 (2013)

    Article  CAS  Google Scholar 

  32. Y.H. Yang, D.Z. Wang, J. Lin, D.F. Khan, G.Y. Lin, J.D. Ma, Evolution of structure and fabrication of Cu/Fe multilayered composites by a repeated diffusion-rolling procedure. Mater. Des. 85, 635 (2015)

    Article  CAS  Google Scholar 

  33. L.F. Zhang, R. Gao, B.L. Zhao, M. Sun, K. Jing, X.P. Wang, T. Hao, Z.M. Xie, R. Liu, Q.F. Fang, C.S. Liu, Effects of annealing temperature and layer thickness on hardening behavior in cross accumulative roll bonded Cu/Fe nanolamellar composite. J. Alloy Compds. 827, 154312 (2020)

    Article  CAS  Google Scholar 

  34. N. Koga, S. Tomono, O. Umezawa, Low-temperature tensile properties of Cu-Fe laminated sheets with various number of layers. Mater. Sci. Eng. A 811, 141066 (2021)

    Article  CAS  Google Scholar 

  35. H. Zhang, K.X. Jiao, J.L. Zhang, J. Liu, Experimental and numerical investigations of interface characteristics of copper/steel composite prepared by explosive welding. Mater. Des. 154, 140 (2018)

    Article  CAS  Google Scholar 

  36. J. Zou, D. Lu, Q. Fu, K. Liu, J. Jiang, Microstructure and properties of Cu–Fe deformation processed in-situ composite. Vacuum 167, 54 (2019)

    Article  CAS  Google Scholar 

  37. S.V. Gladkovsky, S.V. Kuteneva, S.N. Sergeev, Microstructure and mechanical properties of sandwich copper/steel composites produced by explosive welding. Mater. Charact. 154, 294 (2019)

    Article  CAS  Google Scholar 

  38. F.X. Yin, Y.Z. Zhao, S.Y. Yu, W.W. Pang, Molecular dynamics studies on the interface evolution characteristics and deformation mechanisms of Cu/Al multilayers during compression process. J. Appl. Phys. 125(2), 025112 (2019)

    Article  CAS  Google Scholar 

  39. J. Wang, C. Yang, P.D. Hodgson, Mechanical behavior of nano-crystalline metallic thin films and multilayers under microcompression. Metall. Mater. Trans. A. 46(3), 1405 (2015)

    Article  CAS  Google Scholar 

  40. N. Li, J. Wang, A. Misra, J.Y. Huang, Direct observations of confined layer slip in Cu/Nb multilayers. Microsc. Microanal. 18(5), 1155 (2012)

    Article  CAS  Google Scholar 

  41. G. Bonny, R.C. Pasianot, N. Castin, L. Malerba, Ternary Fe–Cu–Ni many-body potential to model reactor pressure vessel steels: first validation by simulated thermal annealing. Philos. Mag. 89(34–36), 3531 (2009)

    Article  CAS  Google Scholar 

  42. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995)

    Article  CAS  Google Scholar 

  43. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model. Simul. Mater. Sci. Eng. 18(1), 015012 (2010)

    Article  Google Scholar 

  44. D. Faken, H. Jónsson, Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 2, 279 (1994)

    Article  CAS  Google Scholar 

  45. A. Stukowski, Structure identification methods for atomistic simulations of crystalline materials. Model. Simul. Mater. Sci. Eng. 20(4), 045021 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (Grant No. 11747015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Pang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Lin, Z., Xin, K. et al. The deformation mechanisms and mechanical properties of Cu/Fe multilayer during compression process. Journal of Materials Research 36, 3203–3213 (2021). https://doi.org/10.1557/s43578-021-00333-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00333-z

Keywords

Navigation