Skip to main content
Log in

Effect of Al content on microstructure, thermal conductivity, and mechanical properties of Mg–La–Al–Mn alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, the microstructure, thermal conductivity, and mechanical properties of Mg–4La–xAl–0.5Mn (x = 0, 0.5, 1, 1.5, 2, and 2.5 wt%) alloys were investigated. As the Al content of the alloys increases, the continuous network Mg12La phase is gradually replaced by non-network Al–La phases. The types of Al–La phases depend on the Al content. When the Al content is relatively low, the alloy tends to form Al2La or Al53La22 phases; otherwise, it tends to form an Al11La3 phase. The concentration of the Al solute atoms in the α-Mg matrix increases gradually as the Al content increases. The thermal conductivity is very sensitive to the concentration of Al solute atoms. The thermal conductivity of high-pressure die cast Mg–4La–2.5Al–0.5Mn alloy is 106.5 W/(m·k) and its yield stress, tensile strength, and elongation are 149 MPa, 253 MPa, and 11.5%, respectively.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. B.L. Mordike, T. Ebert, Magnesium: properties–applications–potential. Mater. Sci. Eng. A 302(1), 37–45 (2001). https://doi.org/10.1016/S0921-5093(00)01351-4

    Article  Google Scholar 

  2. A.A. Luo, Magnesium casting technology for structural applications. J. Magnes. Alloys 1(1), 2–22 (2013). https://doi.org/10.1016/j.jma.2013.02.002

    Article  CAS  Google Scholar 

  3. M.K. Kulekci, Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol. 39, 851–865 (2008). https://doi.org/10.1007/s00170-007-1279-2

    Article  Google Scholar 

  4. M. Avedesian, H. Baker, ASM Specialty Handbook: Magnesium and Magnesium Alloys (ASM International, Materials Park, 1999)

    Google Scholar 

  5. R. Wu, Y. Yan, G. Wang, L.E. Murr, W. Han, Z. Zhang, M. Zhang, Recent progress in magnesium–lithium alloys. Int. Mater. Rev. 60, 65–100 (2015). https://doi.org/10.1179/1743280414Y.0000000044

    Article  CAS  Google Scholar 

  6. L.G. Hou, B.C. Li, R.Z. Wu, L. Cui, P. Ji, R.Y. Long, J.H. Zhang, X.L. Li, A.P. Dong, B.D. Sun, Microstructure and mechanical properties at elevated temperature of Mg–Al–Ni alloys prepared through powder metallurgy. J. Mater. Sci. Technol. 33, 947–953 (2017). https://doi.org/10.1016/j.jmst.2017.02.002

    Article  CAS  Google Scholar 

  7. T.C. Xu, Y. Yang, X.D. Peng, J.F. Song, F.S. Pan, Overview of advancement and development trend on magnesium alloy. J. Magnes. Alloys 7, 536–544 (2019). https://doi.org/10.1016/j.jma.2019.08.001

    Article  CAS  Google Scholar 

  8. Y.Y. Zhou, P.H. Fu, L.M. Peng, D. Wang, Y.X. Wang, B. Hu, M. Liu, A.K. Sachdev, W.J. Ding, Precipitation modification in cast Mg–1Nd–1Ce–Zr alloy by Zn addition. J. Magnes. Alloys 7, 113–123 (2019). https://doi.org/10.1016/j.jma.2019.02.003

    Article  CAS  Google Scholar 

  9. Y.H. Liu, Z.H. Wang, K. Liu, S.B. Li, W.B. Du, Effects of Er on hot cracking susceptibility of Mg–5Zn–xEr magnesium alloys. Acta. Metall. Sin. 55, 389–398 (2019). https://doi.org/10.11900/0412.1961.2018.00399

    Article  CAS  Google Scholar 

  10. C.Y. Su, D.J. Li, A.A. Luo, R.H. Shi, X.Q. Zeng, Quantitative study of microstructure-dependent thermal conductivity in Mg–4Ce–xAl–0.5Mn alloys. Metall. Mater. Trans. A 50, 1970–1984 (2019). https://doi.org/10.1007/s11661-019-05136-w

    Article  CAS  Google Scholar 

  11. S.L. Bai, Study on Thermal Conductivity of AZ91D Magnesium Alloy (Chongqing University, Chongqing, 2016)

    Google Scholar 

  12. A. Rudajevová, M. Staněk, P. Lukáč, Determination of thermal diffusivity and thermal conductivity of Mg–Al alloys. Mater. Sci. Eng. A 341, 152–157 (2003). https://doi.org/10.1016/S0921-5093(02)00233-2

    Article  Google Scholar 

  13. A. Rudajevová, P. Lukáč, Comparison of the thermal properties of AM20 and AS21 magnesium alloys. Mater. Sci. Eng. A 397, 16–21 (2005). https://doi.org/10.1016/j.msea.2004.12.036

    Article  CAS  Google Scholar 

  14. M. Sumida, S. Jung, T. Okane, Solidification microstructure, thermal properties and hardness of magnesium alloy 20 mass% Gd added AZ91D. Mater. Trans. 50, 1161–1168 (2009). https://doi.org/10.2320/matertrans.F-M2009802

    Article  CAS  Google Scholar 

  15. C.B. Yang, F.S. Pan, X.H. Chen, N. Luo, B.J. Han, T.Y. Zhou, Thermal conductivity and mechanical properties of Sm-containing Mg–Zn–Zr alloys. Mater. Sci. Technol. 34(2), 138–144 (2018). https://doi.org/10.1080/02670836.2017.1366707

    Article  CAS  Google Scholar 

  16. J. Yuan, K. Zhang, L. Ting, X.G. Li, Y.J. Li, M.L. Ma, P. Luo, G.Q. Luo, Y.H. Hao, Anisotropy of thermal conductivity and mechanical properties in Mg–5Zn–1Mn alloy. Mater. Des. 40, 257–261 (2012). https://doi.org/10.1016/j.matdes.2012.03.046

    Article  CAS  Google Scholar 

  17. S.B. Li, X.Y. Yang, J.T. Hou, W.B. Du, A review on thermal conductivity of magnesium and its alloys. J. Magnes. Alloy 8, 78–90 (2020). https://doi.org/10.1016/j.jma.2019.08.002

    Article  CAS  Google Scholar 

  18. H.C. Pan, F.S. Pan, R.M. Yang, J. Peng, C.Y. Zhao, J. She, Z.Y. Gao, A.T. Tang, Thermal and electrical conductivity of binary magnesium alloys. J. Mater. Sci. 49, 3107–3124 (2014). https://doi.org/10.1007/s10853-013-8012-3

    Article  CAS  Google Scholar 

  19. T. Ying, M.Y. Zheng, Z.T. Li, X.G. Qiao, S.W. Xu, Thermal conductivity of as-cast and as-extruded binary Mg–Zn alloys. J. Alloys Compd. 621, 250–255 (2015). https://doi.org/10.1016/j.jallcom.2014.09.199

    Article  CAS  Google Scholar 

  20. T. Ying, M.Y. Zheng, Z.T. Li, X.G. Qiao, Thermal conductivity of as-cast and as extruded binary Mg–Al alloys. J. Alloys Compd. 608, 19–24 (2014). https://doi.org/10.1016/j.jallcom.2014.04.107

    Article  CAS  Google Scholar 

  21. H.C. Pan, F.S. Pan, R.M. Yang, J. Peng et al., Thermal and electrical conductivity of Mg–Zn–Al alloys. Mater. Sci. Technol. 30(8), 988–994 (2014). https://doi.org/10.1179/1743284713Y.0000000401

    Article  CAS  Google Scholar 

  22. Y. Ming, G.Q. You, X.X. Xu, H.Y. Wen, J.H. Zhao, Effect of thickness on the thermal conductivity and microstructure of die-cast AZ91D magnesium alloy. Metall. Mater. Trans. A 50, 5969–5976 (2019). https://doi.org/10.1007/s11661-019-05473-w

    Article  CAS  Google Scholar 

  23. C.Y. Su, D.J. Li, A.A. Luo, T. Ying, X.Q. Zeng, Effect of solute atoms and second phases on the thermal conductivity of Mg–RE alloys: a quantitative study. J. Alloys Compd. 747, 431–437 (2018). https://doi.org/10.1016/j.jallcom.2018.03.070

    Article  CAS  Google Scholar 

  24. C.Y. Su, D. Li, T. Ying, L. Zhou, L. Li, X. Zeng, Effect of Nd content and heat treatment on the thermal conductivity of Mg–Nd alloys. J. Alloys Compd. 685, 114–121 (2016). https://doi.org/10.1016/j.jallcom.2016.05.261

    Article  CAS  Google Scholar 

  25. L.L. Rokhlin, Structure and properties of alloys of the Mg-REM system. Met. Sci. Heat Treat. 48, 487–490 (2006). https://doi.org/10.1007/s11041-006-0122-y

    Article  CAS  Google Scholar 

  26. L.L. Rokhlin, Magnesium Alloys Containing Rare Earth Metals: Structure and Properties (Crc. Press, London, 2003)

    Book  Google Scholar 

  27. J.M. Kim, S.J. Lee, Microstructure and castability of Mg–Al–La alloys for high conductivity applications. Int. J. Metal. Cast 9, 15–21 (2015). https://doi.org/10.1007/BF03355619

    Article  Google Scholar 

  28. Y.F. Liu, X.J. Jia, X.G. Qiao, S.W. Xu, M.Y. Zheng, Effect of La content on microstructure, thermal conductivity and mechanical properties of Mg–Al magnesium alloys. J. Alloys Compd. 806, 71–78 (2019). https://doi.org/10.1016/j.jallcom.2019.07.267

    Article  CAS  Google Scholar 

  29. S.M. Zhu, T.B. Abbott, M.A. Gibson, J.F. Nie, M.A. Easton, Age hardening in die-cast Mg–Al–RE alloys due to minor Mn additions. Mater. Sci. Eng. A 656, 34–38 (2016). https://doi.org/10.1016/j.msea.2016.01.012

    Article  CAS  Google Scholar 

  30. J.H. Zhang, Z. Leng, M.L. Zhang, J. Meng, R.Z. Wu, Effect of Ce on microstructure, mechanical properties and corrosion behavior of high-pressure die-cast Mg-4Al-based alloy. J. Alloys Compd. 509, 1069–1078 (2011). https://doi.org/10.1016/j.jallcom.2010.09.185

    Article  CAS  Google Scholar 

  31. X.F. Huang, K. Zhu, X.J. Cao, The roles of alloying elements in magnesium alloys. Foundry Technol. 29(11), 1574–1578 (2008)

    CAS  Google Scholar 

  32. S.M. Zhu, M.A. Gibson, J.F. Nie, M.A. Easton, Microstructural analysis of the creep resistance of die-cast Mg–4Al–2RE alloy. Scr. Mater. 48, 1029–1034 (2003). https://doi.org/10.1016/j.scriptamat.2007.10.041

    Article  CAS  Google Scholar 

  33. J. Bai, Y.S. Sun, F. Xue, J. Qiang, Microstructures and creep properties of Mg–4Al–(1–4) La alloys produced by different casting techniques. Mater. Sci. Eng. A 552, 472–480 (2012). https://doi.org/10.1016/j.msea.2012.05.072

    Article  CAS  Google Scholar 

  34. J.H. Zhang, D.P. Zhang, Z. Tian, J. Wang, K. Liu, H.Y. Lu, D.X. Tang, J. Meng, Microstructures, tensile properties and corrosion behavior of die-cast Mg–4Al–based alloys containing La and/or Ce. Mater. Sci. Eng. A 489, 113–119 (2008). https://doi.org/10.1016/j.msea.2007.12.024

    Article  CAS  Google Scholar 

  35. J.W. Yuan, K. Zhang, X.H. Zhang, X.G. Li, T. Li, Y.J. Li, M.L. Ma, G.L. Shi, Thermal characteristics of Mg–Zn–Mn alloys with high specific strength and high thermal conductivity. J. Alloys Compd. 578, 32–36 (2013). https://doi.org/10.1016/j.jallcom.2013.03.184

    Article  CAS  Google Scholar 

  36. W. Sun, X. Shi, E. Cinkilic, A.A. Luo, Investigation of the non-equilibrium solidification microstructure of a Mg–4Al–2RE (AE42) alloy. J. Mater. Sci. 51, 6287–6294 (2016). https://doi.org/10.1007/s10853-016-9925-4

    Article  CAS  Google Scholar 

  37. C.Y. Su, D.J. Li, W. Jie, R.H. Shi, A.A. Luo, X.Q. Zeng, Z.H. Lin, J. Chen, Enhanced ductility in high-pressure die casting Mg-4Ce-xAl-0.5Mn alloys via modifying second phase. Mater. Sci. Eng. A 773, 138870 (2020). https://doi.org/10.1016/j.msea.2019.138870

    Article  CAS  Google Scholar 

  38. X. Tong, G.Q. You, Y.H. Ding, H.S. Xue, Y.C. Wang, W. Guo, Effect of grain size on low-temperature electrical resistivity and thermal conductivity of pure magnesium. Mater. Lett. 229, 261–264 (2018). https://doi.org/10.1016/j.matlet.2018.07.037

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the collaboration research project between Hitachi (China) Research & Development Corporation and Shanghai Jiao Tong University. This work was also financially supported by Shanghai Science and Technology Committee (No. 18511109302) and the National Natural Science Foundation of China (No. 51825101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejiang Li.

Ethics declarations

Conflict of interest

The authors declare that they do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Li, Z., Zhou, W. et al. Effect of Al content on microstructure, thermal conductivity, and mechanical properties of Mg–La–Al–Mn alloys. Journal of Materials Research 36, 3145–3154 (2021). https://doi.org/10.1557/s43578-021-00319-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00319-x

Keywords

Navigation