Skip to main content
Log in

Unraveling synergistic mixing of SnO2–TiO2 composite as anode for Li-ion battery and their electrochemical properties

  • Invited Paper
  • Focus issue: Advanced Nanocatalysts for Electrochemical Energy Storage and Generation
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effect of Sn/Ti ratio on the electrochemical properties of the anode is studied in Sn-doped TiO2 and SnO2–TiO2 nanofibers synthesized using a pilot-scale electrospinning system. Changes in the lattice structure of TiO2 due to the presence of Sn are studied through X-ray diffraction and high-resolution transmission electron microscopy. Lowering of electrochemical potential (vs Li/Li+) is observed alongside the enhanced capacity (400–600 mAh g−1) with increasing Sn content. Formation of SnO2 grain in sample with high Sn content (70 wt%) shows detrimental effect on cycling stability due to severe volume changes during lithiation/delithiation. We show that the relative fraction of TiO2 and SnO2 framework determines whether the composite is high capacity or high stability. In overall, SnO2–TiO2 composite anode with optimized Sn/Ti ratio can be used for high energy density, cycling stability and working potential lithium-ion battery.

Graphic abstract

The relative fraction of TiO2 and SnO2 framework determines whether the composite is high capacity or high stability

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. K. Cao, T. Jin, L. Yang, L. Jiao, Recent progress in conversion reaction metal oxide anodes for Li-ion batteries. Mater. Chem. Front. 1(11), 2213–2242 (2017). https://doi.org/10.1039/C7QM00175D

    Article  CAS  Google Scholar 

  2. J. Wang, T. Xu, X. Huang, H. Li, T. Ma, Recent progress of silicon composites as anode materials for secondary batteries. RSC Adv. 6(90), 87778–87790 (2016). https://doi.org/10.1039/C6RA08971B

    Article  CAS  Google Scholar 

  3. S. Fang, D. Bresser, S. Passerini, Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries. Adv. Energy Mater. 10(1), 1902485 (2020). https://doi.org/10.1002/aenm.201902485

    Article  CAS  Google Scholar 

  4. Q. Liu et al., Recent progress of layered transition metal oxide cathodes for sodium-ion batteries. Small 15(32), 1805381 (2019). https://doi.org/10.1002/smll.201805381

    Article  CAS  Google Scholar 

  5. A. Eftekhari, D.-W. Kim, Cathode materials for lithium–sulfur batteries: a practical perspective. J. Mater. Chem. A 5(34), 17734–17776 (2017). https://doi.org/10.1039/C7TA00799J

    Article  CAS  Google Scholar 

  6. B. Writer, Anode materials, SEI, carbon, graphite, conductivity, graphene, reversible, formation, in Lithium-ion batteries: a machine-generated summary of current research. ed. by B. Writer (Springer, Cham, 2019), pp. 1–71

    Chapter  Google Scholar 

  7. Z. Liu et al., Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 48(1), 285–309 (2019). https://doi.org/10.1039/C8CS00441B

    Article  CAS  Google Scholar 

  8. Y. Jin, B. Zhu, Z. Lu, N. Liu, J. Zhu, Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv. Energy Mater. 7(23), 1700715 (2017). https://doi.org/10.1002/aenm.201700715

    Article  CAS  Google Scholar 

  9. W. Qi, J.G. Shapter, Q. Wu, T. Yin, G. Gao, D. Cui, Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives. J. Mater. Chem. A 5(37), 19521–19540 (2017). https://doi.org/10.1039/C7TA05283A

    Article  CAS  Google Scholar 

  10. J. Lu, Z. Chen, F. Pan, Y. Cui, K. Amine, High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev. 1(1), 35–53 (2018). https://doi.org/10.1007/s41918-018-0001-4

    Article  CAS  Google Scholar 

  11. N. Pradeep, E. Sivasenthil, B. Janarthanan, S. Sharmila, A review of anode material for lithium ion batteries. J. Phys.: Conf. Ser. 1362, 012026 (2019). https://doi.org/10.1088/1742-6596/1362/1/012026

    Article  CAS  Google Scholar 

  12. P. Roy, S.K. Srivastava, Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A 3(6), 2454–2484 (2015). https://doi.org/10.1039/C4TA04980B

    Article  CAS  Google Scholar 

  13. L. Yin et al., Ultrafine SnO2 nanoparticles as a high performance anode material for lithium ion battery. Ceram. Int. 42(8), 9433–9437 (2016). https://doi.org/10.1016/j.ceramint.2016.02.173

    Article  CAS  Google Scholar 

  14. Q. Tan et al., Synthesis of SnO2/graphene composite anode materials for lithium-ion batteries. Appl. Surf. Sci. 485, 314–322 (2019). https://doi.org/10.1016/j.apsusc.2019.04.225

    Article  CAS  Google Scholar 

  15. F. Lin, H. Wang, Fe2O3–SnO2–graphene films as flexible and binder-free anode materials for lithium-ion batteries. J. Mater. Res. 30(18), 2736–2746 (2015). https://doi.org/10.1557/jmr.2015.265

    Article  CAS  Google Scholar 

  16. R. Liu, N. Zhang, X. Wang, C. Yang, H. Cheng, H. Zhao, SnO2 nanoparticles anchored on graphene oxide as advanced anode materials for high-performance lithium-ion batteries. Front. Mater. Sci. 13(2), 186–192 (2019). https://doi.org/10.1007/s11706-019-0463-2

    Article  Google Scholar 

  17. H. Yoo, G. Lee, J. Choi, Binder-free SnO2–TiO2 composite anode with high durability for lithium-ion batteries. RSC Adv. 9(12), 6589–6595 (2019). https://doi.org/10.1039/C8RA10358E

    Article  CAS  Google Scholar 

  18. H.-Y. Wu, M.-H. Hon, C.-Y. Kuan, I.-C. Leu, Synthesis of TiO2(B)/SnO2 composite materials as an anode for lithium-ion batteries. Ceram. Int. 41(8), 9527–9533 (2015). https://doi.org/10.1016/j.ceramint.2015.04.011

    Article  CAS  Google Scholar 

  19. J.A. Weeks et al., Facile synthesis of a tin oxide-carbon composite lithium-ion battery anode with high capacity retention. ACS Appl. Energy Mater. 2(10), 7244–7255 (2019). https://doi.org/10.1021/acsaem.9b01205

    Article  CAS  Google Scholar 

  20. S. Gao et al., A multi-wall Sn/SnO2@carbon hollow nanofiber anode material for high-rate and long-life lithium-ion batteries. Angew. Chem. Int. Ed. 59(6), 2465–2472 (2020). https://doi.org/10.1002/anie.201913170

    Article  CAS  Google Scholar 

  21. B. Pal et al., Hydrothermal syntheses of tungsten doped TiO2 and TiO2/WO3 composite using metal oxide precursors for charge storage applications. J. Alloys Compd. 740, 703–710 (2018). https://doi.org/10.1016/j.jallcom.2018.01.065

    Article  CAS  Google Scholar 

  22. X. Zhu, S.S. Jan, F. Zan, Y. Wang, H. Xia, Hierarchically branched TiO2@SnO2 nanofibers as high performance anodes for lithium-ion batteries. Mater. Res. Bull. 96, 405–412 (2017). https://doi.org/10.1016/j.materresbull.2017.03.068

    Article  CAS  Google Scholar 

  23. T. Tran, K. McCormac, J. Li, Z. Bi, J. Wu, Electrospun SnO2 and TiO2 composite nanofibers for lithium ion batteries. Electrochim. Acta 117, 68–75 (2014). https://doi.org/10.1016/j.electacta.2013.11.101

    Article  CAS  Google Scholar 

  24. J.-H. Jeun et al., SnO2@TiO2 double-shell nanotubes for a lithium ion battery anode with excellent high rate cyclability. Nanoscale 5(18), 8480–8483 (2013). https://doi.org/10.1039/C3NR01964K

    Article  CAS  Google Scholar 

  25. J.Y. Cheong, C. Kim, J.S. Jang, I.-D. Kim, Rational design of Sn-based multicomponent anodes for high performance lithium-ion batteries: SnO2@TiO2@reduced graphene oxide nanotubes. RSC Adv. 6(4), 2920–2925 (2016). https://doi.org/10.1039/C5RA23704A

    Article  CAS  Google Scholar 

  26. Z. Yang, Q. Meng, Z. Guo, X. Yu, T. Guo, R. Zeng, Highly uniform TiO2/SnO2/carbon hybrid nanofibers with greatly enhanced lithium storage performance. J. Mater. Chem. A 1(35), 10395–10402 (2013). https://doi.org/10.1039/C3TA11751K

    Article  CAS  Google Scholar 

  27. B. Pal, Z.H. Bakr, S.G. Krishnan, M.M. Yusoff, R. Jose, Large scale synthesis of 3D nanoflowers of SnO2/TiO2 composite via electrospinning with synergistic properties. Mater. Lett. 225, 117–121 (2018). https://doi.org/10.1016/j.matlet.2018.04.120

    Article  CAS  Google Scholar 

  28. Z.H. Bakr, Q. Wali, J. Ismail, N.K. Elumalai, A. Uddin, R. Jose, Synergistic combination of electronic and electrical properties of SnO2 and TiO2 in a single SnO2–TiO2 composite nanofiber for dye-sensitized solar cells. Electrochim. Acta 263, 524–532 (2018). https://doi.org/10.1016/j.electacta.2018.01.074

    Article  CAS  Google Scholar 

  29. J. Wang et al., Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries. Nano Energy 6, 19–26 (2014). https://doi.org/10.1016/j.nanoen.2014.02.012

    Article  CAS  Google Scholar 

  30. W. Guo, W. Sun, Y. Wang, Multilayer CuO@NiO hollow spheres: microwave-assisted metal–organic-framework derivation and highly reversible structure-matched stepwise lithium storage. ACS Nano 9(11), 11462–11471 (2015). https://doi.org/10.1021/acsnano.5b05610

    Article  CAS  Google Scholar 

  31. C.-Y. Tsai, C.-W. Liu, C. Fan, H.-C. Hsi, T.-Y. Chang, Synthesis of a SnO2/TNT heterojunction nanocomposite as a high-performance photocatalyst. J. Phys. Chemistry C 121(11), 6050–6059 (2017). https://doi.org/10.1021/acs.jpcc.6b11005

    Article  CAS  Google Scholar 

  32. D. Wang et al., Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3(4), 907–914 (2009). https://doi.org/10.1021/nn900150y

    Article  CAS  Google Scholar 

  33. Y.S. Hu, L. Kienle, Y.G. Guo, J. Maier, High lithium electroactivity of nanometer-sized rutile TiO2. Adv. Mater. 18(11), 1421–1426 (2006). https://doi.org/10.1002/adma.200502723

    Article  CAS  Google Scholar 

  34. M. Lee et al., The electrochemical performances of n-type extended lattice spaced Si negative electrodes for lithium-ion batteries. Front. Chem. (2019). https://doi.org/10.3389/fchem.2019.00389

    Article  Google Scholar 

  35. D. Lau et al., Reduced silicon fragmentation in lithium ion battery anodes using electronic doping strategies. ACS Appl. Energy Mater. 3(2), 1730–1741 (2020). https://doi.org/10.1021/acsaem.9b02200

    Article  CAS  Google Scholar 

  36. M. Chen et al., Boron-doped porous Si anode materials with high initial coulombic efficiency and long cycling stability. J. Mater. Chem. A 6(7), 3022–3027 (2018). https://doi.org/10.1039/C7TA10153H

    Article  CAS  Google Scholar 

  37. Y. Domi, H. Usui, M. Shimizu, Y. Kakimoto, H. Sakaguchi, Effect of phosphorus-doping on electrochemical performance of silicon negative electrodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 8(11), 7125–7132 (2016). https://doi.org/10.1021/acsami.6b00386

    Article  CAS  Google Scholar 

  38. P. Goswami, J.N. Ganguli, Tuning the band gap of mesoporous Zr-doped TiO2 for effective degradation of pesticide quinalphos. Dalton Trans. 42(40), 14480–14490 (2013). https://doi.org/10.1039/C3DT51891D

    Article  CAS  Google Scholar 

  39. Y. Hou et al., Oxygen vacancies promoting the electrocatalytic performance of CeO2 nanorods as cathode materials for Li–O2 batteries. J. Mater. Chem. A 7(11), 6552–6561 (2019). https://doi.org/10.1039/C9TA00882A

    Article  CAS  Google Scholar 

  40. X. Zhai et al., Oxygen vacancy boosted the electrochemistry performance of Ti4+ doped Nb2O5 toward lithium ion battery. Appl. Surf. Sci. 499, 143905 (2020). https://doi.org/10.1016/j.apsusc.2019.143905

    Article  CAS  Google Scholar 

  41. P. Zeng et al., Enhancement of electrochemical performance by the oxygen vacancies in hematite as anode material for lithium-ion batteries. Nanoscale Res. Lett. 12(1), 13 (2017). https://doi.org/10.1186/s11671-016-1783-0

    Article  CAS  Google Scholar 

  42. J. Ahn, S. Yoon, S.G. Jung, J.-H. Yim, K.Y. Cho, A conductive thin layer on prepared positive electrodes by vapour reaction printing for high-performance lithium-ion batteries. J. Mater. Chem. A 5(40), 21214–21222 (2017). https://doi.org/10.1039/C7TA05591A

    Article  CAS  Google Scholar 

  43. R. Zhao, J. Liu, J. Gu, The effects of electrode thickness on the electrochemical and thermal characteristics of lithium ion battery. Appl. Energy 139, 220–229 (2015). https://doi.org/10.1016/j.apenergy.2014.11.051

    Article  CAS  Google Scholar 

  44. W. Bauer, D. Nötzel, V. Wenzel, H. Nirschl, Influence of dry mixing and distribution of conductive additives in cathodes for lithium ion batteries. J. Power Sources 288, 359–367 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.081

    Article  CAS  Google Scholar 

  45. L. Xue, X. Li, Y. Liao, L. Xing, M. Xu, W. Li, Effect of particle size on rate capability and cyclic stability of LiNi0.5Mn1.5O4 cathode for high-voltage lithium ion battery. J. Solid State Electrochem. 19(2), 569–576 (2015). https://doi.org/10.1007/s10008-014-2635-4

    Article  CAS  Google Scholar 

  46. T. Liu et al., A high concentration electrolyte enables superior cycleability and rate capability for high voltage dual graphite battery. J. Power Sources 437, 226942 (2019). https://doi.org/10.1016/j.jpowsour.2019.226942

    Article  CAS  Google Scholar 

  47. R. Tian et al., Quantifying the factors limiting rate performance in battery electrodes. Nat. Commun. 10(1), 1933 (2019). https://doi.org/10.1038/s41467-019-09792-9

    Article  CAS  Google Scholar 

  48. L. Hu et al., Excellent cyclic and rate performances of SiO/C/graphite composites as li-ion battery anode. Front. Chem. (2020). https://doi.org/10.3389/fchem.2020.00388

    Article  Google Scholar 

  49. A. Mahmoud, M. Chamas, P.-E. Lippens, Electrochemical impedance study of the solid electrolyte interphase in MnSn2 based anode for Li-ion batteries. Electrochim. Acta 184, 387–391 (2015). https://doi.org/10.1016/j.electacta.2015.10.078

    Article  CAS  Google Scholar 

  50. R. Sen, P. Johari, Understanding the lithiation of the Sn anode for high-performance Li-ion batteries with exploration of novel Li–Sn compounds at ambient and moderately high pressure. ACS Appl. Mater. Interfaces 9(46), 40197–40206 (2017). https://doi.org/10.1021/acsami.7b11173

    Article  CAS  Google Scholar 

  51. F. Xin, M.S. Whittingham, Challenges and development of tin-based anode with high volumetric capacity for Li-ion batteries. Electrochem. Energy Rev. 3(4), 643–655 (2020). https://doi.org/10.1007/s41918-020-00082-3

    Article  CAS  Google Scholar 

  52. X. Zheng et al., A high capacity nanocrystalline Sn anode for lithium ion batteries from hydrogenation induced phase segregation of bulk YSn2. J. Mater. Chem. A 6(43), 21266–21273 (2018). https://doi.org/10.1039/C8TA07578F

    Article  CAS  Google Scholar 

  53. J. Li et al., Phase evolution of conversion-type electrode for lithium ion batteries. Nat. Commun. 10(1), 2224 (2019). https://doi.org/10.1038/s41467-019-09931-2

    Article  CAS  Google Scholar 

  54. Y. Abe, N. Hori, S. Kumagai, Electrochemical impedance spectroscopy on the performance degradation of LiFePO4/graphite lithium-ion battery due to charge-discharge cycling under different C-rates. Energies 12(23), 4507 (2019). https://doi.org/10.3390/en12234507

    Article  CAS  Google Scholar 

  55. M.V. Reddy, G. Prithvi, K.P. Loh, B.V.R. Chowdari, Li storage and impedance spectroscopy studies on Co3O4, CoO, and CoN for Li-ion batteries. ACS Appl. Mater. Interfaces 6(1), 680–690 (2014). https://doi.org/10.1021/am4047552

    Article  CAS  Google Scholar 

  56. M.V. Reddy, R. Jose, T.H. Teng, B.V.R. Chowdari, S. Ramakrishna, Preparation and electrochemical studies of electrospun TiO2 nanofibers and molten salt method nanoparticles. Electrochim. Acta 55(9), 3109–3117 (2010). https://doi.org/10.1016/j.electacta.2009.12.095

    Article  CAS  Google Scholar 

  57. M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Nano-(V1/2Sb1/2Sn)O4: a high capacity, high rate anode material for Li-ion batteries. J. Mater. Chem. 21(27), 10003–10011 (2011). https://doi.org/10.1039/C0JM04140H

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is funded by the Fundamental Research Grant Scheme of the Ministry of Education, Govt. of Malaysia through FRGS/1/2019/STG07/UMP/01/1. Ling JK acknowledges the financial support from Post-graduate Research Scheme (PGRS) by Universiti Malaysia Pahang (http://www.ump.edu.my) through UMP.05.02/26.10/03/03/PGRS2003123. The authors would like to express gratitude to Battery Research Centre of Green Energy (BRCGE) of Ming Chi University of Technology, New Taipei City, Taiwan, R.O.C. (https://www.mcut.edu.tw/) and Taiwan Experience Education Program (TEEP@AsiaPlus) for their research financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Jose.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1476 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, J., Karuppiah, C., Reddy, M.V. et al. Unraveling synergistic mixing of SnO2–TiO2 composite as anode for Li-ion battery and their electrochemical properties. Journal of Materials Research 36, 4120–4130 (2021). https://doi.org/10.1557/s43578-021-00313-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00313-3

Keywords

Navigation