Skip to main content
Log in

Boosting the visible-light activity of ZrO2/g-C3N4 by controlling the crystal structure of ZrO2

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

ZrO2/g-C3N4 semiconductor photocatalytic materials were prepared by ultrasonic method. The effect of zirconia with different crystal structure on visible light photocatalytic activity of ZrO2/g-C3N4 composite was investigated. Loading monoclinic and tetragonal mixed crystals ZrO2 can improve the photocatalytic degradation efficiency of g-C3N4. The optimum composite with 15 wt% ZrO2/g-C3N4 showed the superior photocatalytic activity for degradation of RhB and PNP under visible-light irradiation, which are 2.5 and 2.8 times higher than pure g-C3N4 under same conditions. The main active species affecting photocatalytic degradation are holes (hVB+) and ·O2 by photocatalytic active species capture experiment, ·OH is also partially involved in the photocatalytic degradation. The 15 wt% ZrO2/g-C3N4 has excellent catalytic performance and good stability in photocatalytic repeated experiments, and has a broad application prospect.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Scheme 1

Similar content being viewed by others

References

  1. W. Li, A. Elzatahry, D. Aldhayan, D.Y. Zhao, Chem. Soc. Rev. 47, 8203 (2018)

    Article  CAS  Google Scholar 

  2. V.U. Pandit, S.S. Arbuj, U.P. Mulik, Environ. Sci. Technol. 48, 4178–4183 (2014)

    Article  CAS  Google Scholar 

  3. Z. Zhang, B. Huang, and Q. Qian: APL Mater. 8, 041114 (2020).

  4. S. Wang, Y. Wang, S.Q. Zang, Small Methods. 4, 1900586 (2020)

    Article  CAS  Google Scholar 

  5. V.U. Pandit, S.S. Arbuj, Y.B. Pandit, RSC Adv. 5, 10326–10331 (2015)

    Article  CAS  Google Scholar 

  6. V. Pandit, S. Arbuj, R. Hawaldar, J. Mater. Chem. A. 3, 4338–4344 (2015)

    Article  CAS  Google Scholar 

  7. N. Raza, W. Raza, H. Gul, J. Clean. Prod. 254, 120031 (2020)

    Article  CAS  Google Scholar 

  8. R.A. Senthil, J. Theerthagiri, A. Selvi, Opt. Mater. 64, 533–539 (2017)

    Article  CAS  Google Scholar 

  9. H. Safajou, H. Khojasteh, M. Salavati-Niasari, J. Colloid Interface Sci. 498, 423–432 (2017)

    Article  CAS  Google Scholar 

  10. R.A. Senthil, S. Osman, J. Pan, Colloids Surf. A. 567, 171–183 (2019)

    Article  CAS  Google Scholar 

  11. R.A. Senthil, S. Osman, J. Pan, Ceram. Int. 45, 18683–18690 (2019)

    Article  CAS  Google Scholar 

  12. R.A. Senthil, A. Khan, J. Pan, Colloids Surf. A. 586, 124183 (2020)

    Article  CAS  Google Scholar 

  13. R.A. Senthil, Y. Wu, X. Liu, Environ. Pollut. 269, 116034 (2021)

    Article  CAS  Google Scholar 

  14. Y. Wang, X. Wang, M. Antonietti, Angew. Chem. Int. Ed. 51, 68–89 (2012)

    Article  CAS  Google Scholar 

  15. G. Liao, Y. Gong, L. Zhang, H. Gao, G.J. Yang, B. Fang, Energy Environ. Sci. 12, 2080 (2019)

    Article  CAS  Google Scholar 

  16. S. Sun, S. Liang, Nanoscale 9, 10544 (2017)

    Article  CAS  Google Scholar 

  17. S. Patnaik, S. Martha, K.M. Parida, RSC Adv. 6, 46929 (2016)

    Article  CAS  Google Scholar 

  18. J. Fu, J. Yu, C. Jiang, B. Cheng, Adv. Energy Mater. 8, 1701503 (2018)

    Article  CAS  Google Scholar 

  19. G. Wang, T. Zhang, W. Yu, R. Si, Y. Liu, Z. Zhao, ACS Catal. 10, 5715–5722 (2020)

    Article  CAS  Google Scholar 

  20. Y. Zhang, Y. Zhu, Q. Cai, A. Vasileff, J. Am. Chem. Soc. 139, 3336–3339 (2017)

    Article  CAS  Google Scholar 

  21. B. Ma, G. Chen, C. Fave, J. Am. Chem. Soc. 142, 6188–6195 (2020)

    Article  CAS  Google Scholar 

  22. H. Wang, X. Xiao, S. Liu, J. Am. Chem. Soc. 141, 18578–18584 (2019)

    Article  CAS  Google Scholar 

  23. X. Lu, K. Xu, S. Tao, Chem. Sci. 7, 1462–1467 (2016)

    Article  CAS  Google Scholar 

  24. X. Bai, C. Sun, S. Wu, Y. Zhu, J. Mater. Chem. A. 3, 2741–2747 (2015)

    Article  CAS  Google Scholar 

  25. Y. Sui, J. Liu, Y. Zhang, X. Tian, Nanoscale 5, 9150–9155 (2013)

    Article  CAS  Google Scholar 

  26. H. Sudrajat, S. Babel, H. Sakai, J. Environ. Manage. 165, 224–234 (2016)

    Article  CAS  Google Scholar 

  27. H. Li, Y. Wu, C. Li, Appl. Catal. B. 251, 305–312 (2019)

    Article  CAS  Google Scholar 

  28. Z. Noroozi, H.A. Rasekh, M.J. Soltanianfard, Polyhedron 168, 11–20 (2019)

    Article  CAS  Google Scholar 

  29. Q. Gao, J. Xu, Z. Wang, Appl. Catal., B. 271, 118933 (2020)

    Article  CAS  Google Scholar 

  30. A. Kambur, G.S. Pozan, I. Boz, Appl. Catal. B. 115, 149–158 (2012)

    Article  CAS  Google Scholar 

  31. Q. Yuan, Y. Liu, L. Li, Microporous Mesoporous Mater. 124, 169–178 (2009)

    Article  CAS  Google Scholar 

  32. X. Wang, L. Zhang, H. Lin, RSC Adv. 4, 40029–40035 (2014)

    Article  CAS  Google Scholar 

  33. X. Bi, S. Yu, E. Liu, RSC Adv. 4, 524–532 (2020)

    Article  Google Scholar 

  34. M. Zhou, Y. Wu, L. Shi, Solid-State Sci. 104, 106202 (2020)

    Article  CAS  Google Scholar 

  35. W. Zhang, F.P. Glasser, J. Eur. Ceram. Soc. 11, 143–147 (1993)

    Article  CAS  Google Scholar 

  36. R. Caruso, O.D. Sanctis, A. Macias-Garcia, J. Mater. Process. Technol. 152, 299–303 (2004)

    Article  CAS  Google Scholar 

  37. K.R. Reddy, C.H.V. Reddy, M.N. Nadagouda, J. Environ. Manag. 238, 25–40 (2019)

    Article  CAS  Google Scholar 

  38. Q. Zhang, Y. Zhang, H. Li, Appl. Catal. A. General. 466, 233–239 (2013)

    Article  CAS  Google Scholar 

  39. R.K. Tamrakar, N. Tiwari, V. Dubey, J. Radiat. Res. Appl. Sci. 8, 399–403 (2015)

    Article  Google Scholar 

  40. H. Yan, H. Yang, J. Alloys Compd. 509, L26–L29 (2011)

    Article  CAS  Google Scholar 

  41. X. Bai, L. Wang, R. Zong, J. Phys. Chem. C. 117, 9952–9961 (2013)

    Article  CAS  Google Scholar 

  42. K. Sayama, H. Arakawa, J. Phys. Chem. 97, 531–533 (1993)

    Article  CAS  Google Scholar 

  43. J. Mao, T. Peng, X. Zhang, Catal. Sci. Technol. 3, 1253–1260 (2013)

    Article  CAS  Google Scholar 

  44. C. Pan, J. Xu, Y. Wang, Adv. Funct. Mater. 22, 1518–1524 (2012)

    Article  CAS  Google Scholar 

  45. X.G. Yu, Y. Gong, W.Y. Bi, Key Eng. Mater. 368, 1277–1279 (2008)

    Article  Google Scholar 

  46. V.N. Khabashesku, J.L. Zimmerman, J.L. Margrave, Chem. Mater. 12, 3264–3270 (2000)

    Article  CAS  Google Scholar 

  47. X. Fu, L.A. Clark, Q. Yang, Environ. Sci. Technol. 30, 647–653 (1996)

    Article  CAS  Google Scholar 

  48. Y. Ke, H. Guo, D. Wang, J. Mater. Res. 29, 2473 (2014)

    Article  CAS  Google Scholar 

  49. L. Ye, J. Liu, Z. Jiang, Appl. Catal. B. 142, 1–7 (2013)

    Google Scholar 

  50. M. Ou, Q. Zhong, S. Zhang, J. Sol-Gel Sci. Technol. 72, 443–454 (2014)

    Article  CAS  Google Scholar 

  51. L. Huang, H. Xu, Y. Li, Dalton Trans. 42, 8606–8616 (2013)

    Article  CAS  Google Scholar 

  52. Y. He, J. Cai, T. Li, Chem. Eng. J. 215, 721–730 (2013)

    Article  CAS  Google Scholar 

  53. S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 25, 10397–10401 (2009)

    Article  CAS  Google Scholar 

  54. P. Trens, M.J. Hudson, R. Denoyel, J. Mater. Chem. 8, 2147–2151 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Science and Technology Development Plan of Jilin Province (Grant No. 20180520081JH) and Thirteen Five-Year Program for Science and Technology of Education Department of Jilin Province (Grant Nos. JJKH20200803KJ, JJKH20200804KJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Xu or Yaomei Fu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 69 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Hu, Y., Du, J. et al. Boosting the visible-light activity of ZrO2/g-C3N4 by controlling the crystal structure of ZrO2. Journal of Materials Research 36, 3086–3095 (2021). https://doi.org/10.1557/s43578-021-00309-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00309-z

Keywords

Navigation