Skip to main content
Log in

Enhanced visible-light catalytic degradation of methylene blue by improving adsorption of porous zirconium-based porphyrin MOFs sensitized TiO2 photocatalyst

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The zirconium-based porphyrin MOFs sensitized TiO2 (PCN224–TiO2) was synthesized in situ by self-assembly of porphyrin, ZrCl4 with nano TiO2. The composite catalyst was determined by detailed structural and photoelectrochemical characterization. The UV–Vis absorption and fluorescence spectrum confirm that PCN224 and TiO2 are coupled. The PCN224–TiO2 had significant absorption of visible light and the PCN224–TiO2 had the largest photo-generated current, which proved the porphyrin MOFs material has good internal conductivity and has a close combination with TiO2. Compared with carboxyphenyl porphyrin sensitized TiO2 (HTCPP–TiO2), mixture of TCPP and TiO2 (TCPP/TiO2) and PCN224, the PCN224–TiO2 showed better removal performance of methylene blue under visible light. Under low-power xenon lamp irradiation, the removal rate of PCN224–TiO2 (1:3) on methylene blue reached 93.2% in 4 h. And PCN224–TiO2 had stable cycling catalytic performance. The PCN224–TiO2 promoted the degradation process by strengthening the adsorption of organic pollutants, thus improving the removal performance.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. M. Zubair, M. Daud, G. Mckay, F. Shehzad, M.A. Al-Harthi, Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation. Appl. Clay Sci. 143, 279–292 (2017)

    Article  CAS  Google Scholar 

  2. T. Mustafa, K. Tushar, A. Sharmeen, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interface Sci. 209, 172–184 (2014)

    Article  CAS  Google Scholar 

  3. B.W. Muhammad, D. Muhammad, A. Faheem, A. Mamdouh, Dendrimer assisted dye-removal: A critical review of adsorption and catalytic degradation for wastewater treatment. J. Mol. Liquids 315, 113775 (2020)

    Article  CAS  Google Scholar 

  4. Z. Xi, W. Jing, D. Xing-Xing, L. Yun-Kai, Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment. Chemosphere 242, 125144 (2020)

    Article  CAS  Google Scholar 

  5. K. Wen, L. Wei, Z. Ren, B. Wang, J. Lu, Enhanced photocatalytic degradation of cationic and anionic dyes by Ag-modified g-C3N4 composite: Insights on different mechanisms under visible light. J. Mater. Res. (2021). https://doi.org/10.1557/s43578-021-00203-8

    Article  Google Scholar 

  6. W. Wang, F. Lin, B. Yan, Z. Cheng, L. Hou, The role of seashell wastes in TiO2/seashell composites: photocatalytic degradation of methylene blue dye under sunlight. Environ. Res. 188, 109831 (2020)

    Article  CAS  Google Scholar 

  7. Y. Tingming, Q. Weixiao, A. Xiaoqiang, L. Huijuan, Q. Jiuhui, Faceted TiO2 photocatalytic degradation of anthraquinone in aquatic solution under solar irradiation. Sci. Total Environ. 688, 592–599 (2019)

    Article  CAS  Google Scholar 

  8. M. Miyauchi, A. Nakajima, T. Watanabe, K. Hashimoto, Photoinduced hydrophilic conversion of TiO2/WO3 layered thin films. Chem. Mater. 14(11), 4714–4720 (2002)

    Article  CAS  Google Scholar 

  9. M. Ni, M. Leung, D. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 11(3), 401–425 (2007)

    Article  CAS  Google Scholar 

  10. G. Zhu, Y. Shan, T. Lin et al., Hydrogenated blue titania with high solar absorption and greatly improved photocatalysis. Nanoscale 8, 4705–4712 (2016)

    Article  CAS  Google Scholar 

  11. Xu. Jijian, Z. Tian, G. Yin et al., Controllable reduced black titania with enhanced photoelectrochemical water splitting performance. Dalton Trans. 46, 1047–1051 (2017)

    Article  CAS  Google Scholar 

  12. C. Lin, Y. Gao, J. Zhang, D. Xue, H. Li, GO/TiO2 composites as a highly active photocatalyst for the degradation of methyl orange. J. Mater. Res. 35, 1307–1315 (2020)

    Article  CAS  Google Scholar 

  13. J. Gao, S. Jia, J. Liu, Z. Sun, D. Tang, Enhanced effect of adsorption and photocatalytics by TiO2 nanoparticles embedded porous PVDF nanofiber scaffolds. J. Mater. Res. (2021). https://doi.org/10.1557/s43578-021-00181-x

    Article  Google Scholar 

  14. Z. Jing, Z. Li, L. Xiangqing, K. Shizhao, M. Jin, Visible light photocatalytic activity of porphyrin tin(IV) sensitized TiO2 nanoparticles for the degradation of 4-nitrophenol and methyl orange. J. Dispersion Sci. Technol. 32(7), 943–947 (2011)

    Article  CAS  Google Scholar 

  15. G. Zengcai, C. Bin, M. Jingbo, Z. Mingyi, Z. Peng, Z. Zhenyi, W. Jingfeng, Z. Xin, S. Yangyang, S. Changlu, L. Yichun, Iron phthalocyanine/TiO2 nanofiber heterostructures with enhanced visible photocatalytic activity assisted with H2O2. J. Hazard. Mater. 219, 156–163 (2012)

    Google Scholar 

  16. S. Palmas, A. Da Pozzo, M. Mascia, A. Vacca, P.C. Ricci, Sensitization of TiO2 nanostructures with Coumarin 343. Chem. Eng. J. 211, 285–292 (2012)

    Article  CAS  Google Scholar 

  17. G. Fengyu, S. Shuang, T. Xiaolong, Y. Honghong, Z. Shunzheng, Tetraphenyl-porphyrin decorated anatase TiO2 catalysts for the visible-light photocatalytic oxidation of gaseous ammonia at room temperature. Appl. Surf. Sci. 506, 144421 (2019)

    Google Scholar 

  18. L. Zhonglu, W. Chen, S. Zhengping, Z. Wei, W. Ning, M. Giuseppe, New porphyrin/Cu(II) porphyrin-TiO2 nanohybrids for improved photocatalytic oxidation and reduction activities. Mater. Chem. Phys. 252, 123228 (2020)

    Article  CAS  Google Scholar 

  19. S. Rangasamy, R. Ravikrishna, N. Kieran, M. Anne, S. Parasuraman, C. Raghuram, Evaluation of visible-light driven photocatalytic reaction by porphyrin coupled TiO2 nanotubes obtained via rapid breakdown anodization. J. Environ. Chem. Eng. 8(5), 104382 (2020)

    Article  CAS  Google Scholar 

  20. W. Zhang, C. Wang, X. Liu, L. Jun, Enhanced photocatalytic activity in porphyrin-sensitized TiO2 nanorods. J. Mater. Res. 32, 2773–2780 (2017)

    Article  CAS  Google Scholar 

  21. W. Chongchen, W. Xun, L. Wen, The synthesis strategies and photocatalytic performances of TiO2/MOFs composites: A state-of-the-art review. Chem. Eng. J. 391, 123601 (2020)

    Article  CAS  Google Scholar 

  22. Z. Huang, J. Zhou, Y. Zhao, H. Cheng, Y. Yu, Stable core-shell ZIF-8@ZIF-67 MOFs photocatalyst for highly efficient degradation of organic pollutant and hydrogen evolution. J. Mater. Res. 36, 602–614 (2021)

    Article  Google Scholar 

  23. Y. Xiuju, Z. Longguan, High-efficiency photocatalytic performance and mechanism of silver-based metal-organic framework. J. Mater. Res. 34, 991–998 (2019)

    Article  CAS  Google Scholar 

  24. K. Guesh, C. Caiuby, M. Álvaro, K. Guesh, C.A.D. Caiuby, M. Álvaro, M. Díaz-García, I. Díaz, M. Sanchez-Sanchezb, sustainable preparation of MIL-100(Fe) and its photocatalytic behavior in the degradation of methyl orange in water. Cryst. Growth Design 17(4), 1806–1813 (2017)

    Article  CAS  Google Scholar 

  25. T. Minman, L. Dahuan, Y. Qingyuan, S. Devautour-Vinot, G. Maurin, Influence of framework metal ions on the dye capture behavior of MIL-100 (Fe, Cr) MOF type solids. J. Mater. Chem. A 1(30), 8534–8537 (2013)

    Article  CAS  Google Scholar 

  26. G. Shutao, L. Weihua, S. Ningzhao, F. Cheng, W. Qiuhua, W. Zhiang, W. Chun, Integration of a plasmonic semiconductor with a metal-organic framework: a case of Ag/AgCl@ZIF-8 with enhanced visible light photocatalytic activity. RSC Adv. 4, 61736–61742 (2014)

    Article  CAS  Google Scholar 

  27. C. Jing, C. Haiyong, W. Tiansheng, L. Jingfang, W. Jingang, L. Xiaoquan, Copper ion fluorescent probe based on Zr-MOFs composite material. Anal. Chem. 91(7), 4331–4336 (2019)

    Article  CAS  Google Scholar 

  28. M. Daniel, L. Guangxu, L. Wenbin, Efficient Electrocatalytic proton reduction with carbon nanotube-supported metal–organic frameworks. J. Am. Chem. Soc. 140(46), 15591–15595 (2018)

    Article  CAS  Google Scholar 

  29. W. Lei, J. Pengxia, D. Shuhua, S. Houde, H. Jingwei, W. Qizhao, In-situ incorporation of Copper(II) porphyrin functionalized zirconium MOF and TiO2 for efficient photocatalytic CO2 reduction. Sci. Bull. 64(013), 926–933 (2019)

    Article  CAS  Google Scholar 

  30. A. Crake, K. Christoforidis, A. Kafizas, S. Zafeiratos, C. Petit, CO2 capture and photocatalytic reduction using bifunctional TiO2/MOF nanocomposites under UV-visible irradiation. Appl. Catal. B 210, 131–140 (2017)

    Article  CAS  Google Scholar 

  31. X. Deng, Y. Fang, S. Lin, Q. Cheng, Q. Liu, X. Zhang, Porphyrin-based porous organic frameworks as a biomimetic catalyst for highly efficient colorimetric immunoassay. ACS Appl. Mater. Interfaces 9(4), 3514–3523 (2017)

    Article  CAS  Google Scholar 

  32. F. Dawei, G. Zhiyuan, L. Jianrong, J. Hailong, W. Zhangwen, Z. Hongcai, Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem. Int. Ed. 51(41), 10307–10310 (2012)

    Article  CAS  Google Scholar 

  33. Z. Yanming, D. Yuze, L. Futai, J. Chenggong, L. Lin, Z. Jie, Z. Bao, F. Yaqing, Coordinative integration of a metal-porphyrinic framework and TiO2 nanoparticles for the formation of composite photocatalysts with enhanced visible-light-driven photocatalytic activities. J. Mater. Chem. A 5, 15380–15389 (2017)

    Article  Google Scholar 

  34. D. Lv, R. Shi, Y. Chen, C. Yang, H. Wu, Z. Xin, H. Xi, L. Zhong, Q. Xia, selective adsorptive separation of CO2/CH4 and CO2/N2 by a water resistant zirconium-porhyrin metal-organic framework. Ind. Eng. Chem. Res. 57(36), 12215–12224 (2018)

    Article  CAS  Google Scholar 

  35. D. Feng, Z.Y. Gu, J.R. Li, H.L. Jiang, Z. Wei, H.C. Zhou, Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem. 124(41), 10453–10456 (2012)

    Article  Google Scholar 

  36. W. Morris, B. Volosskiy, S. Demir, F. Gandara, P.L. Mcgrier, H. Furukawa, D. Cascio, J.F. Stoddart, O.M. Yaghi, Synthesis, structure, and metalation of two new highly porous zirconium metal–organic frameworks. Inorg. Chem. 51(12), 6443–6445 (2012)

    Article  CAS  Google Scholar 

  37. F. Dawei, C. Wanchun, W. Zhangwen, G. Zhiyuan, J. Hailong, C. Yingpin, J. Donald, Z. Hongcai, construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination. J. Am. Chem. Soc. 135(45), 17105–17110 (2013)

    Article  CAS  Google Scholar 

  38. Z. Wei, W. Chen, L. Xiao, L. Jun, Enhanced photocatalytic activity in porphyrin-sensitized TiO2 nanorods. J. Mater. Res. 32(14), 2773–2780 (2017)

    Article  CAS  Google Scholar 

  39. C. Ruan, L. Zhang, Y. Qin, X. Chen, X. Zhang, J. Wan, Z. Peng, J. Shi, X. Li, L. Wang, Synthesis of porphyrin sensitized TiO2/graphene and its photocatalytic property under visible light. Mater. Lett. 141, 362–365 (2015)

    Article  CAS  Google Scholar 

  40. N. Sapawe, A.A. Jalil, S. Triwahyono, S.H. Adam, N.F. Jaafar, M.A.H. Satar, Isomorphous substitution of Zr in the framework of aluminosilicate HY by an electrochemical method: Evaluation by methylene blue decolorization. Appl. Catal. B 125, 311–323 (2012)

    Article  CAS  Google Scholar 

  41. Q. Liu, R. Zhu, Y. Jiang, Q. Jia, S. Yang, S. Qian, D. Wang, C. Peng, The facile preparation of 5, 10, 15, 20-tetrakis (4-carboxyl phenyl) porphyrin-CdS nanocomposites and their photocatalytic activity. Mater. Sci. Eng. B 188, 106–113 (2014)

    Article  CAS  Google Scholar 

  42. Q. Liu, Y. Yang, H. Li, R. Zhu, Q. Shao, S. Yang, J. Xu, NiO nanoparticles modified with 5,10,15,20-tetrakis (4-carboxyl pheyl)-porphyrin: Promising peroxidase mimetics for H2O2 and glucose detection. Biosens. Bioelectron. 64, 147–153 (2015)

    Article  CAS  Google Scholar 

  43. M. Rabbani, M. Heidari-Golafzani, R. Rahimi, Synthesis of TCPP/ZnFe2O4@ZnO nanohollow sphere composite for degradation of methylene blue and 4-nitrophenol under visible light. Mater. Chem. Phys. 179, 35–41 (2016)

    Article  CAS  Google Scholar 

  44. U.A. Dar, S.A. Shah, UV-visible and fluorescence spectroscopic assessment of meso-tetrakis-(4-halophenyl) porphyrin; H2TXPP (X = F, Cl, Br, I) in THF and THF-water system: Effect of pH and aggregation behaviour. Spectrochimica Acta Part A 240, 118570 (2020)

    Article  CAS  Google Scholar 

  45. L. Zhe, X. Juanding, J. Hailong, Encapsulating a Co(II) molecular photocatalyst in metal–organic framework for visible-light-driven H2 production: Boosting catalytic efficiency via spatial charge separation. ACS Catal. 6(8), 5359–5365 (2016)

    Article  CAS  Google Scholar 

  46. S. Licheng, T. Mingyi, S. Fuhai, H. Qingmei, A biomimetic model for the active site of iron-only hydrogenases covalently bonded to a porphyrin photosensitizer. Angew. Chem. Int. Ed. 45(7), 1130–1133 (2006)

    Article  CAS  Google Scholar 

  47. S. Licheng, T. Mingyi, M. Shuzhen, H. Jinhuaang, H. Qingmei, The active site model for iron-only hydrogenases coordinatively bonded to a metalloporphyrin photosensitizer. Organometallics 26(7), 1575–1577 (2007)

    Article  CAS  Google Scholar 

  48. L. Shi, Y. Liuqing, Z. Huabin, K. Chang, Z. Guixia, T. Kako, Y. Jinhua, Implantation of Iron(III) in porphyrinic metal organic frameworks for highly improved photocatalytic performance. Appl. Catal. B 224, 60–68 (2018)

    Article  CAS  Google Scholar 

  49. S. Nazri, M. Khajeh, A.R. Oveisi, R. Luque, E. Rodríguez-Castellón, M. Ghaffari-Moghaddam, Thiol-functionalized PCN-222 MOF for fast and selective extraction of gold ions from aqueous media. Separation Purif. Technol. 259, 118197 (2021)

    Article  CAS  Google Scholar 

  50. Y. Gao, J. Xia, D. Liu, R. Kang, S. Deng, Synthesis of mixed-linker Zr-MOFs for emerging contaminant adsorption and photodegradation under visible light. Chem. Eng. J. 378, 122118 (2019)

    Article  CAS  Google Scholar 

  51. K. Kočí, M. Reli, I. Troppová, M. Šihor, J. Kupková, P. Kustrowski, P. Praus, Photocatalytic decomposition of N2O over TiO2/g-C3N4 photocatalysts heterojunction. Appl. Surf. Sci. 396, 1685–1695 (2017)

    Article  CAS  Google Scholar 

  52. L.G.D. Trindade, K.M.N. Borba, A.B. Trench, L. Zanchet, T.M. Mazzo, Trindade effective strategy to coupling Zr-MOF/ZnO: Synthesis, morphology and photoelectrochemical properties. Solid State Chemistry 293, 121794 (2021)

    Article  CAS  Google Scholar 

  53. C.B. Kc, K. Stranius, P. D’Souza, N.K. Subbaiyan, H. Lemmetyinen, N.V. Tkachenko, F. D’Souza, Sequential photoinduced energy and electron transfer directed improved performance of the supramolecular solar cell of a zinc porphyrin-zinc phthalocyanine conjugate modified TiO2 surface. J. Phys. Chem. C 117(2), 763–773 (2013)

    Article  CAS  Google Scholar 

  54. C. Huang, Y. Lv, Q. Zhou, S. Kang, X. Li, J. Mu, Visible photocatalytic activity and photoelectrochemical behavior of TiO2 nanoparticles modified with metal porphyrins containing hydroxyl group. Ceram. Int. 40(5), 7093–7098 (2014)

    Article  CAS  Google Scholar 

  55. L. Tianfeng, F. Dawei, C. Yingpin, L. Zou, M. Bosch, S. Yuan, Z. Wei, S. Fordham, K. Wang, Z. Hongcai, Topology-guided design and syntheses of highly stable mesoporous porphyrinic zirconium metal-organic frameworks with high surface area. J. Am. Chem. Soc. 137(1), 413–419 (2015)

    Article  CAS  Google Scholar 

  56. T. Zhang, K. Li et al., Annealing temperature-dependent electrochemical properties of Aeroxide P25 TiO2 nanoparticles as anode material for lithium storage. Progr. Natl. Sci. 29(06), 86–91 (2019)

    Google Scholar 

  57. D.W. Feng, W.C. Chung, Z.W. Wei, Z.Y. Gu, H.L. Jiang, Y.P. Chen, D.J. Darensbourg, H.C. Zhou, Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination. J. Am. Chem. Soc. 135, 17105 (2013)

    Article  CAS  Google Scholar 

  58. P. Zhang, D. Zhiyuan, R. Yuanming, X. Hualin, L. Yun, D. Shimin, Preparation and photocatalytic application of AgBr modified Bi2WO6 nanosheets with high adsorption capacity. J. Mater. Res. 33, 3953–3962 (2018)

    Article  CAS  Google Scholar 

  59. H. Imahori, S. Hayashi, H. Hayashi, A. Oguro, Y. Matano, Effects of porphyrin substituents and adsorption conditions on photovoltaic properties of porphyrin-sensitized TiO2 cells. J. Phys. Chem. C 113(42), 18406–18413 (2009)

    Article  CAS  Google Scholar 

  60. M.K. Nazeeruddin, S.M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C.H. Fischer, M. Grätzel, Acid–base equilibria of (2,2′-Bipyridyl-4,4′-dicarboxylic acid) ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorg. Chem. 38(26), 6298–6305 (1999)

    Article  CAS  Google Scholar 

  61. Y. Fu, D. Sun, Y. Chen, R. Huang, Z. Ding, X. Fu, Z. Li, An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem. 124(14), 3420–3423 (2012)

    Article  Google Scholar 

  62. M.V. Carević, N.D. Abazović, T.B. Novaković, V.B. Pavlovic, M.I. Comor, Zirconium dioxide nanopowders with incorporated Si4+ ions as efficient photocatalyst for degradation of trichlorophenol using simulated solar light. Appl. Catal. B 195, 112–120 (2016)

    Article  CAS  Google Scholar 

  63. J. Long, S. Wang, Z. Ding, S. Wang, Y. Zhou, H. Ling, X. Wang, Amine-functionalized zirconium metal-organic framework as efficient visible-light photocatalyst for aerobic organic transformations. Chem. Commun. 48(95), 11656–11658 (2012)

    Article  CAS  Google Scholar 

  64. T. Zhang, T. Oyama, A. Aoshima, H. Hidaka, N. Serpone, Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation. J. Photochem. Photobiol., A 140(2), 163–172 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. U1662115), Shandong Province Natural Science Foundation (Grant No. ZR2019MB057) and the Fundamental Research Funds for the Central Universities (Grant No. 18CX02118A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Zhu.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Zhu, X., Zhang, C. et al. Enhanced visible-light catalytic degradation of methylene blue by improving adsorption of porous zirconium-based porphyrin MOFs sensitized TiO2 photocatalyst. Journal of Materials Research 36, 2961–2972 (2021). https://doi.org/10.1557/s43578-021-00303-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00303-5

Keywords

Navigation