Skip to main content
Log in

Weakened interlayer interaction of incommensurate graphene as a key factor for superior lithium intercalation

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Despite the widespread use of graphitic carbon as an active material for Lithium intercalation, the real capacity of graphitic structures remains unclear. The efficient lithium intercalation into graphite is prohibited by strong Van der Waals interlayer interaction that limits the specific capacity of Lithium-ion batteries (LIB). Here, we discuss features of the novel graphenic structure, named Incommensurate Multilayer Graphene (IMLG), that demonstrates superlative Lithium intercalation as active material in LIBs. The structural and binding analysis of IMLG anode revealed the uniqueness of this material and substantiates that weakened interplanar interaction of rotated graphene layers plays a key role in allowing full penetration of lithium and intercalation onto graphene layers. The Li2C2 can be achieved in lithiated IMLG anodes due to freely stacked adjacent layers becoming an excellent host for stable and reversible Lithium absorption/desorption. Superlative Lithium intercalation of IMLG provides stable, long-term charge/discharge of Lithium batteries increasing up to 1700 mAh/g specific capacity.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A. Hérold, Bull. Soc. Chim. Fr. 187, 999–1012 (1955)

    Google Scholar 

  2. N. Daumas, A. Hérold, Compt. Rend. Acad. Sci. Ser. C 268, 373–375 (1969)

    CAS  Google Scholar 

  3. W. Rüdorff, Chimia 19, 489–499 (1965)

    Google Scholar 

  4. H. Wu, Y. Cui, Nano Today 7, 414–429 (2012)

    Article  CAS  Google Scholar 

  5. Y. Zhao, J. Feng, X. Liu et al., Nat. Commun. 5, 4565 (2014)

    Article  CAS  Google Scholar 

  6. M. Ko, S. Chae, J. Mater. Nat. Energy 1, 16113 (2016)

    Article  CAS  Google Scholar 

  7. N. Kambe, M.S. Dresselhaus, G. Dresselhaus, S. Basu, A.R. McGhie, J.E. Mater, Sci. Eng. 40, 1–4 (1979)

    CAS  Google Scholar 

  8. F. Yao et al., J. Am. Chem. Soc. 134, 8646–8654 (2012)

    Article  CAS  Google Scholar 

  9. L.J. Zhou, Z.F. Hou, L.M. Wu, Y.F. Zhang, J. Phys. Chem. C 118, 28055–28062 (2014)

    Article  CAS  Google Scholar 

  10. X.F. Fan, W.T. Zheng, J.-L. Kuo, Mater. Interfaces 4, 2432–2438 (2012)

    Article  CAS  Google Scholar 

  11. L.J. Zhou, Z.F. Hou, L.M. Wu, J. Phys. Chem. C 116, 21780–21787 (2012)

    Article  CAS  Google Scholar 

  12. E. Pollak et al., Nano. Lett. 10, 3386–3388 (2010)

    Article  CAS  Google Scholar 

  13. G. Radhakrishnanz, J.D. Cardema, P.M. Adams, H.I. Kim, B. Foran, J. Electrochem. Soc. 159, A752–A761 (2012)

    Article  Google Scholar 

  14. J. Kemeng et al., Nat. Commun. 10, 275 (2019)

    Article  Google Scholar 

  15. J. Berashevich, T. Chakraborty, Phys. Rev. B 84(1–4), 033403 (2011)

    Article  Google Scholar 

  16. Y. Cao et al., Nature 556, 43–50 (2018)

    Article  CAS  Google Scholar 

  17. J.M. Park, Y. Cao, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, Nature 590, 249–255 (2021)

    Article  CAS  Google Scholar 

  18. F. Varchon, P. Mallet, L. Magaud, J.-Y. Veuillen, Phys. Rev. B 77, 165415 (2008)

    Article  Google Scholar 

  19. G. Li, A. Luican, J.M.B. Lopes dos Santos, A.H. Castro Neto, A. Reina, J. Kong, E.Y. Andrei, Nat. Phys. 6, 109 (2009)

    Article  Google Scholar 

  20. G. Li et al., Nat. Phys. 6, 109–113 (2010)

    Article  Google Scholar 

  21. S. Latil, V. Menuier, L. Henrard, Phys. Rev. B 76(1–4), 201402 (2007)

    Article  Google Scholar 

  22. T.M. Paronyan, A.K. Thapa, A. Sherehiy, J.B. Jasinski, J.S. Dilip, NATURE. Sci. Rep. 7, 39944 (2017)

    Article  CAS  Google Scholar 

  23. T.M. Paronyan, A.K. Thapa, A. Sherehiy, J.B. Jasinski, J.S. Dilip, ECST 77, 311–320 (2017)

    CAS  Google Scholar 

  24. T.M. Paronyan, in Dekker Encyclopedia of Nanoscience and Nanotechnology, ed. by S.E. Lyshevski (2018). https://doi.org/10.1081/E-ENN3

  25. P. Ponchara, A. Ayari, T. Michel, J.L. Sauvajol, Phys. Rev. B 78(1–4), 113407 (2008)

    Article  Google Scholar 

  26. K. Kim et al., Phys. Rev. Let. 108(1–6), 246103 (2012)

    Article  Google Scholar 

  27. R.J. Nemanich, S.A. Solim, Phys. Rev. B 20, 392–401 (1979)

    Article  CAS  Google Scholar 

  28. A.C. Ferrari et al., Phys. Rev. Lett. 97, 187401–187403 (2006)

    Article  CAS  Google Scholar 

  29. L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Phys. Rep. 473, 51–87 (2009)

    Article  CAS  Google Scholar 

  30. J.-B. Wu et al., Nat. Commun. 5(1), 5309 (2014)

    Article  CAS  Google Scholar 

  31. B.A. Sole, N.E. Drewett, L.J. Hardwick, Faraday Discuss. 172, 223–237 (2014)

    Article  CAS  Google Scholar 

  32. S. Bühlmann, E. Blank, R. Haubner, B. Lux, Diam. Relat. Mater. 8, 194–201 (1999)

    Article  Google Scholar 

  33. B. Pardanaud, G. Cartry, L. Lajaunie, R. Arenal, J.G. Buijnsters, J Carbon Res. C 5, 79 (2019). https://doi.org/10.3390/c5040079

    Article  CAS  Google Scholar 

  34. K. Sato et al., Phys. Rev. B 84(1–5), 035419 (2011)

    Article  Google Scholar 

  35. C. Ferrari, D.M. Basko, Nat Nanotechnol 8, 235–246 (2013)

    Article  CAS  Google Scholar 

  36. P. Venezuela, M. Lazzeri, F. Mauri, Phys Rev B 84, 035433 (2011)

    Article  Google Scholar 

  37. D.R. Secrist, L.G. Wisnyi, Acta Crystallogr. 15, 1042 (1962)

    Article  CAS  Google Scholar 

  38. M.Y. Liu, J.S. Xue, T. Zheng, J.R. Dahn, Carbon 34, 193–200 (1996)

    Article  CAS  Google Scholar 

  39. V.Z. Mordkovich, Synth. Mater. 80, 243–247 (1996)

    Article  CAS  Google Scholar 

  40. L. Sato, M. Noguchi, A. Demanchi, N. Oki, M. Endo, Science 264, 556–558 (1994)

    Article  CAS  Google Scholar 

  41. D.W. Kim et al., ASC Nano 15, 797 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially supported by National Science Foundation (NSF) SBIR Phase 1 Award ID # 1843172. We thank University of Louisville colleagues Prof. F Zamborini, Prof. B. Alphenaar, Dr. A.K. Thapa, Dr. A. Sherehiy, Dr. J. Jasinski and Dr. J.S. Jangam for supporting this project at early stage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tereza M. Paronyan.

Ethics declarations

Conflict of interest

The authors declare no competing interests

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paronyan, T.M. Weakened interlayer interaction of incommensurate graphene as a key factor for superior lithium intercalation. Journal of Materials Research 36, 2872–2880 (2021). https://doi.org/10.1557/s43578-021-00297-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00297-0

Navigation