Skip to main content
Log in

Effect of Pt-Mn nanoparticles supported on CNT in methanol electro-oxidation reaction, experimental, and theoretical studies

  • Article
  • Focus Issue: Advanced Nanocatalysts for Electrochemical Energy Storage and Generation
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This work reports the facile synthesis of Pt-Mn nanoparticles supported on multiwall carbon nanotubes using the Brust–Schiffrin method and their electrochemical performance during methanol electro-oxidation reaction. According to the topographical and structural results, the Pt-Mn nanoparticles present high dispersion with a narrow size distribution of ~ 2.5 nm. Meanwhile, the electrochemical evaluation exhibits a greatly enhanced electrocatalytic activity. The electrocatalyst's performance improves as Mn increased up to 40 at.% in Pt nanoparticles, but it decreases as Mn reaches 50 at.%. The electrocatalytic activity fall could be attributed to a reduction on active sites favorable to the dissociation and dehydrogenation of methanol. Density functional theory computations reveal that the partial density of states (PDOS) associated with [Mn]3d orbitals could be directly correlated with the observed electrocatalytic behavior. The respective maximum PDOS contribution at the Fermi level also corresponds to the most active electrocatalyst, which contains Mn of ~ 40 at.%.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S.S. Munjewar, B.T. Shashikant, K. Mallick Ranjan, Approaches to overcome the barrier issues of passive direct methanol fuel cell. Renew. Sustain. Energy Rev. 67, 1087–1104 (2017). https://doi.org/10.1016/j.rser.2016.09.002

    Article  CAS  Google Scholar 

  2. L.C. Ordóñez, B. Escobar, R. Barbosa, Y. Verde-Gómez, Enhanced performance of direct ethanol fuel cell using Pt/MWCNTs as anodic electrocatalyst. J. Appl. Electrochem. 45, 1205–1210 (2015). https://doi.org/10.1007/s10800-015-0854-8

    Article  CAS  Google Scholar 

  3. L. Gong, Z. Yang, K. Li, W. Xing, Ch. Liu, J. Ge, Recent development of methanol electro-oxidation catalysts for direct methanol fuel cell. J. Energy Chem. 7, 1618–1628 (2018). https://doi.org/10.1016/j.jechem.2018.01.029

    Article  Google Scholar 

  4. J. Oh, H. Choi, M. Kim, Y. Kim, C. Park, Effects of morphological characteristics of Pt nanoparticles supported on poly(acrylic acid)-wrapped multiwalled carbon nanotubes on electrochemical performance of direct methanol fuel cells. J. Mater. Res. 27(15), 2035–2045 (2012). https://doi.org/10.1557/jmr.2012.156

    Article  CAS  Google Scholar 

  5. M.J. Lee, J.S. Kang, Y.S. Kang, D.Y. Chung, H. Shin, C.Y. Ahn, S. Park, M.J. Kim, S. Kim, K.S. Lee, Y.E. Sung, Understanding the bifunctional effect for removal of co poisoning: blend of a platinum nanocatalyst and hydrous ruthenium oxide as a model system. Acs Catal. 6(4), 2398–407 (2016)

    Article  CAS  Google Scholar 

  6. D. Cao, G.Q. Lu, A. Wieckowski, S.A. Wasileski, M. Neurock, Mechanisms of methanol decomposition on Pt: a combined experimental and ab initio approach. J. Phys. Chem. B 109, 11622–11533 (2005). https://doi.org/10.1021/jp0501188

    Article  CAS  Google Scholar 

  7. L. Li, Y. Xing, Pt-Ru nanoparticles supported on carbon nanotubes as fuel cell catalysts. J. Phys. Chem. C 111, 2803–2808 (2007). https://doi.org/10.1021/jp0655470

    Article  CAS  Google Scholar 

  8. L. Yang, J. Ge, Ch. Liu, G. Wang, W. Xing, Approaches to improve the performance of anode methanol oxidation reaction-a short review. Curr. Opin. Electrochem. 4, 83–88 (2017). https://doi.org/10.1016/j.coelec.2017.10.018

    Article  CAS  Google Scholar 

  9. J.H. Bae, J.-H. Park, M.-K. Seo, S. Kim, Synthesis and electrochemical performances of platinum decorated polydopamine-coated carbon nanotubes/graphene composites as fuel cell catalysts. J. Alloy Compd. 822, 153586 (2020). https://doi.org/10.1016/j.jallcom.2019.153586

    Article  CAS  Google Scholar 

  10. Y. Huang, J. Cai, Y. Guo, Roles of Pb and MnOx in PtPb/MnOx-CNTs catalyst for methanol electro-oxidation. Int. J. Hydrogen Energy 37, 1263–1271 (2012). https://doi.org/10.1016/j.ijhydene.2011.10.002

    Article  CAS  Google Scholar 

  11. H. Zheng, M.S. Matseke, T.S. Munonde, The unique Pd@Pt/C core-shell nanoparticles as methanol-tolerant catalysts using sonochemical synthesis. Ultrason. Sonochem. 57, 166–171 (2019). https://doi.org/10.1016/j.ultsonch.2019.05.023

    Article  CAS  Google Scholar 

  12. D. Friebel, V. Viswanathan, D.J. Miller, T. Annivev, H. O’Gasawara, A.H. Larsen, C.P. Orady, J.K. Norskov, A. Nilsson, Balance of nanostructure and bimetallic interactions in Pt model fuel cell catalysts: in situ XAS and DFT study. J. Am. Chem. Soc. 134, 9664–9671 (2012). https://doi.org/10.1021/ja3003765

    Article  CAS  Google Scholar 

  13. Z. Lin, L. Ji, O. Toprakci, W. Krause, X. Zhang, Electrospun carbon nanofiber-supported Pt–Pd alloy composites for oxygen reduction. J. Mater. Res. 25(7), 1329–1335 (2010). https://doi.org/10.1557/JMR.2010.0163

    Article  CAS  Google Scholar 

  14. J. Chang, L. Feng, K. Jiang, H. Xue, W. Cai, Ch. Liu, W. Xing, Pt–CoP/C as an alternative PtRu/C catalyst for direct methanol fuel cells. J. Mater. Chem. A 4, 18607–18613 (2016). https://doi.org/10.1039/C6TA07896F

    Article  CAS  Google Scholar 

  15. Y. Sun, Y. Zhou, Ch. Zhu, L. Hu, M. Han, A. Wang, H. Huang, Y. Liu, Z. Kang, A Pt–Co3O4–CD electrocatalyst with enhanced electrocatalytic performance and resistance to CO poisoning achieved by carbon dots and Co3O4 for direct methanol fuel cells. Nanoscale 17, 5467–5474 (2017). https://doi.org/10.1039/C7NR01727H

    Article  Google Scholar 

  16. J. Li, S. You, M. Liu, P. Zhang, Y. Dai, Y. Yu, N. Ren, J. Zou, ZIF-8-derived carbon-thin-layer protected WC/W24O68 micro-sized rods with enriched oxygen vacancies as efficient Pt co-catalysts for methanol oxidation and oxygen reduction. Appl. Catal. B 265, 118574 (2020). https://doi.org/10.1016/j.apcatb.2019.118574

    Article  CAS  Google Scholar 

  17. N. Yu, L. Kuai, Q. Wang, B. Geng, Pt nanoparticles residing in the pores of porous LaNiO3 nanocubes as high-efficiency electrocatalyst for direct methanol fuel cell. Nanoscale 4, 5386–5393 (2012). https://doi.org/10.1039/C2NR31055D

    Article  CAS  Google Scholar 

  18. Y. Kang, C.B. Murray, Synthesis and electrocatalytic properties of cubic Mn–Pt nanocrystals (nanocubes). J. Am. Chem. Soc. 132, 7568–7569 (2010). https://doi.org/10.1021/ja100705j

    Article  CAS  Google Scholar 

  19. T.H.M. Housmans, A.H. Wonders, M.T. Koper, Structure sensitivity of methanol electro-oxidation pathways on platinum: an on-line electrochemical mass spectrometry study. J. Phys. Chem. B 110, 10021–10031 (2006). https://doi.org/10.1021/jp055949s

    Article  CAS  Google Scholar 

  20. M.T.M. Koper, Structure sensitivity and nanoscale effects in electrocatalysis. Nanoscale 3, 2054–2073 (2011). https://doi.org/10.1039/C0NR00857E

    Article  CAS  Google Scholar 

  21. J.S. Gullón, F.J.V. Iglesias, J.M. Feliu, Shape dependent electrocatalysis. Annu. Rep. Prog. Chem. C 107, 263–297 (2001). https://doi.org/10.1039/C1PC90010B

    Article  Google Scholar 

  22. A. Demortière, P. Launois, N. Goubet, P.A. Albouy, C. Petit, Shape-controlled nanocubes and their assembly into two-dimensional and three-dimensional superlattices. J Phys Chem B. 112, 14583–14592 (2008). https://doi.org/10.1021/jp802081n

    Article  CAS  Google Scholar 

  23. A. Demortière, C. Petit, First synthesis by liquid–liquid phase transfer of magnetic CoxPt100-x nanoalloys. Langmuir 23, 8575–8584 (2007). https://doi.org/10.1021/la700719h

    Article  CAS  Google Scholar 

  24. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991). https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  25. M.J.-F. Guinel, N. Brodusch, Y. Verde Gómez, B. Escobar Morales, R. Gauvin, Multiwalled carbon nanotubes decorated by platinum catalyst nanoparticles—examination and microanalysis using scanning and transmission electron microscopies. J. Microsc. 252, 49–57 (2013). https://doi.org/10.1111/jmi.12067

    Article  CAS  Google Scholar 

  26. E.C. Landis, K.L. Klein, A. Liao, E. Pop, D.K. Hensley, A.V. Melechko, R.J. Hamers, Covalent functionalization and electron–transfer properties of vertically aligned carbon nanofibers: the importance of edge-plane sites. Chem. Mater. 22, 2357–2366 (2010). https://doi.org/10.1021/cm9036132

    Article  CAS  Google Scholar 

  27. PCPDFWIN No. 04–0802, JCPDS–ICCD 2003.

  28. PCPDFWIN No. 08–0415, JCPDS–ICCD 2003.

  29. PCPDFWIN No. 04–0326, 04–0732, 12–0141, 24–0508, JCPDS–ICCD 2003

  30. PCPDFWIN No. 17–0910, 32–0637, JCPDS–ICCD 2003.

  31. D.H. Jung, S.J. Bae, S.J. Kim, K.S. Nahm, P. Kim, Effect of the Pt precursor on the morphology and catalytic performance of Pt-impregnated on Pd/C for the oxygen reduction reaction in polymer electrolyte fuel cell. Int J Hydrogen Energy 36, 9115–9192 (2011). https://doi.org/10.1016/j.ijhydene.2011.04.166

    Article  CAS  Google Scholar 

  32. A. Khorsand, W.H.A. Majid, M.E. Abrishami, R. Parvizi, Synthesis, magnetic properties and X–ray analysis of Zn0.97X0.03O nanoparticles (X = Mn, Ni and Co) using Scherrer and size strain plot method. Solid State Sci. 14, 488–494 (2012). https://doi.org/10.1016/j.solidstatesciences.2012.01.019

    Article  CAS  Google Scholar 

  33. G. Alonso-Núñez, L. Morales de la Garza, E. Rogel-Hernandez, E. Reynoso, A. Licea-Claverie, R.M. Felix-Navarro, G. Berhault, F. Paraguay-Delgado, New organometallic salts as precursors for the functionalization of carbon nanotubes with metallic nanoparticles. J. Nanoparticle Res. 13, 3643–3656 (2011). https://doi.org/10.1007/s11051-011-0283-5

    Article  CAS  Google Scholar 

  34. P. Urchaga, S. Baranton, C. Coutanceau, G. Jerkiewicz, Evidence of an eley-rideal mechanism in the stripping of a saturation layer of chemisorbed CO on platinum nanoparticles. Langmuir 28, 13094–13104 (2011). https://doi.org/10.1021/la302388p

    Article  CAS  Google Scholar 

  35. L. Liang, A. Hsu, D. Chu, R. Chen, Ethanol electro-oxidation on Pt/C and PtSn/C catalysts in alkaline and acid solutions. Int. J. Hydrogen Energy 35, 365–372 (2010). https://doi.org/10.1016/j.ijhydene.2009.10.058

    Article  CAS  Google Scholar 

  36. J.S. Gullón, F.J.V. Iglesias, A.L. Cudero, E. Garnier, J.M. Feliu, A. Aldaz, Shape-dependent electrocatalysis: methanol and formic acid electro oxidation on preferentially oriented Pt nanoparticles. Phys. Chem. Chem. Phys. 10, 3689–3698 (2008). https://doi.org/10.1039/b802703j

    Article  CAS  Google Scholar 

  37. C.L. Green, A. Kucernak, Determination of the platinum and ruthenium surface areas in platinum-ruthenium catalysts by underpotential deposition of copper 2: effect of surface composition on activity. J. Phys. Chem. B 106, 11446–11456 (2002). https://doi.org/10.1021/jp020859y

    Article  CAS  Google Scholar 

  38. J. Suntivich, Z. Xu, C.E. Carlton, J. Kim, B. Han, S.W. Lee, N. Bonnet, N. Marzari, L.F. Allard, H.A. Gasteiger, K.H. Schifferli, Y.S. Horn, Surface composition tuning of Au–Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro–oxidation. J. Am. Chem. Soc. 135, 7985–7991 (2013). https://doi.org/10.1021/ja402072r

    Article  CAS  Google Scholar 

  39. J. Kang, S. Nam, Y. Oh, H. Choi, S. Wi, B. Lee, T. Hwang, S. Hong, B. Park, Electronic effect in methanol dehydrogenation on Pt surfaces: potential control during methanol electro oxidation. J Phys Chem Lett. 4, 2931–2936 (2013). https://doi.org/10.1021/jz401450v

    Article  CAS  Google Scholar 

  40. A.M. Valenzuela-Muñiz, Y. Verde, M. Miki-Yoshida, G. Alonso-Núñez, Synthesis of multi-walled carbon nanotubes by spray-pyrolysis usinga new iron organometallic complex as catalytic agent. J. Nanosci. Nanotechnol. 8, 6456–6450 (2008). https://doi.org/10.1166/jnn.2008.18406

    Article  Google Scholar 

  41. J.R. Rodríguez, R.M. Félix, E.A. Reynoso, Y.G. Ponce, Y.V. Gómez, S. Fuentes, G. Alonso, Synthesis of Pt and Pt–Fe nanoparticles supported on MWCNTs used as electrocatalysts in the methanol oxidation reaction. J Energy Chem. 23, 483–490 (2014). https://doi.org/10.1016/S2095-4956(14)60175-3

    Article  Google Scholar 

  42. T. Ghosh, B.M. Leonard, Q. Zhou, F.J. DiSalvo, Pt alloy and intermetallic phases with V, Cr, Mn, Ni and Cu: synthesis as nanomaterials and possible application as fuel cell catalysts. Chem. Mater. 22, 2190–2202 (2010). https://doi.org/10.1021/cm9018474

    Article  CAS  Google Scholar 

  43. P. Kim, J.B. Joo, W. Kim, J. Kim, I.K. Song, J. Yi, NaBH4-assited ethylene glycol reduction for preparation of carbon-supported Pt catalyst for methanol electro-oxidation. J. Power Sources 160, 987–990 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.050

    Article  CAS  Google Scholar 

  44. X. Ma, L. Luo, L. Zhu, L. Yu, L. Sheng, K. An, Y. Ando, X. Zhao, Pt–Fe catalyst nanoparticles supported on single-wall carbon nanotubes: direct synthesis and electrochemical performance for methanol oxidation. J Power Sources. 241, 274–280 (2013). https://doi.org/10.1016/j.jpowsour.2013.04.104

    Article  CAS  Google Scholar 

  45. Software from Accelrys Inc.: http://www.accelrys.com.

  46. B. Delley, An all-electron numerical method for solving local density functional for polyatomic molecules. J Chem Phys. 92, 508–517 (1990). https://doi.org/10.1063/1.458452

    Article  CAS  Google Scholar 

  47. B. Delley, From molecules to solids with the DMol3 approach. J Phys Chem. 113, 7756–7764 (2000). https://doi.org/10.1063/1.1316015

    Article  CAS  Google Scholar 

  48. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys Rev Lett. 77, 3865–3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  49. B. Delley, A scattering theoretic approach to scalar relativistic corrections on bonding. Int J Quant Chem. 69, 423–433 (1998). https://doi.org/10.1002/(SICI)1097-461X(1998)69:3%3c423::AID-QUA19%3e3.0.CO;2-2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank to A. Eloisa, Fco. Ruiz, I. Gradilla, A. Tiznado, and J. Peralta from CNyN-UNAM for their technical support. We acknowledge CONACyT (under projects 254667, 117373, 274314) for its financial support.

Funding

This study was supported by Consejo Nacional de Ciencia y Tecnología (Grant Nos. 254667, 117373, 274314).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study and manuscript equally.

Corresponding author

Correspondence to Ysmael Verde-Gómez.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, J.R., Verde-Gómez, Y., Díaz de León, J.N. et al. Effect of Pt-Mn nanoparticles supported on CNT in methanol electro-oxidation reaction, experimental, and theoretical studies. Journal of Materials Research 36, 4216–4226 (2021). https://doi.org/10.1557/s43578-021-00275-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00275-6

Keywords

Navigation