Abstract
3D printing for tissue engineering requires biomaterials with mechanical and biological properties suitable for both tissue regeneration and the printing process. A filament made of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) combined with 45S5 Bioglass (BG) was used to print 3D scaffolds by fused deposition modeling (FDM). Chemical treatment of BG particles with chlorotrimethylsilane (CTMS) improved the ductility of the extruded filaments and allowed excellent printability. Controlling the printing parameter infill density (I%), from 20 to 90%, scaffolds were obtained with interconnected pores and channel sizes in the 100–800 µm range and exhibiting tensile modulus from 0.25 to 1.36 GPa. PHBV + BG scaffolds and PHBV scaffolds coated with CTMS treated BG particles, as a model of a rough and biologically active coating, showed no cytotoxic effects, and cells preferred the scaffolds containing BG in terms of cell spreading. Mechanical and biological properties of the scaffolds were similar to those of the extracellular matrix (ECM) of trabecular bone.
Graphic abstract

This is a preview of subscription content,
to check access.






Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.
References
P. Tack, J. Victor, P. Gemmel, L. Annemans, Biomed. Eng. Online (2016). https://doi.org/10.1186/s12938-016-0236-4
E.F. Morgan, G.U. Unnikrisnan, A.I. Hussein, Annu. Rev. Biomed. Eng. (2018). https://doi.org/10.1146/annurev-bioeng-062117-121139
H. Li, R. Du, J. Chang, J. Biomater. Appl. (2005). https://doi.org/10.1177/0885328205049472
J. Wu, K. Xue, H. Li, J. Sun, K. Liu, PLoS ONE (2013). https://doi.org/10.1371/journal.pone.0071563
L.L. Hench, J. Mater. Sci. Mater. Med. (2006). https://doi.org/10.1007/s10856-006-0432-z
J.R. Jones, Acta Biomater. (2013). https://doi.org/10.1016/j.actbio.2012.08.023
L.L. Hench, J. Eur. Ceram. Soc. (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.08.002
H. Yuan, J.D. de Bruijn, X. Zhang, C.A. van Blitterswijk, K. de Groot, J. Biomed. Mater. Res. (2001). https://doi.org/10.1002/1097-4636(2001)58:3%3c270::aid-jbm1016%3e3.0.co;2-2
K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini, Biomaterials (2006). https://doi.org/10.1016/j.biomaterials.2006.01.039
E. Fukada, Y. Ando, Int. J. Biol. Macromol. (1986). https://doi.org/10.1016/0141-8130(86)90056-5
S. Gogolewski, M. Jovanovic, S.M. Perren, J.G. Dillon, M.K. Hughes, J. Biomed. Mater. Res. (1993). https://doi.org/10.1002/jbm.820270904
I. Manavitehrani, A. Fathi, H. Badr, S. Daly, A. Negahi Shirazi, F. Dehghani, Polymers (Basel) (2016). https://doi.org/10.3390/polym8010020
S. Bose, S. Vahabzadeh, A. Bandyopadhyay, Mater. Today (2013). https://doi.org/10.1016/j.mattod.2013.11.017
S. Zhao, M. Zhu, J. Zhang, Y. Zhang, Z. Liu, Y. Zhu, C. Zhang, J. Mater. Chem. B (2014). https://doi.org/10.1039/c4tb00838c
M.A. Vigil Fuentes, S. Thakur, F. Wu, M. Misra, S. Gregori, A.K. Mohanty, Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-68331-5
Á. Rivera-Briso, A. Serrano-Aroca, Polymers (2018). https://doi.org/10.3390/polym10070732
B. Marelli, C.E. Ghezzi, J.E. Barralet, A.R. Boccaccini, S.N. Nazhat, Biomacromol (2010). https://doi.org/10.1021/bm1001087
Q. Fu, N. Zhou, W. Huang, D. Wang, L. Zhang, H. Li, J. Mater. Sci. Mater. Med. (2004). https://doi.org/10.1007/s10856-004-5742-4
A. Tilocca, N.H. de Leeuw, J. Phys. Chem. B (2006). https://doi.org/10.1021/jp065146k
L. Lefebvre, J. Chevalier, L. Gremillard, R. Zenati, G. Thollet, D. Bernache-Assolant, A. Govin, Acta Mater. (2007). https://doi.org/10.1016/j.actamat.2007.01.029
C. Rodriguez-Navarro, L. Linares-Fernandez, E. Doehne, E. Sebastian, J. Cryst. Growth (2002). https://doi.org/10.1016/S0022-0248(02)01499-9
T. Annen, M. Epple, J. Chem. Soc. Dalton Trans. (2009). https://doi.org/10.1039/b911047j
Q. Liu, M. Zhu, W. Wu, Z. Qin, Polym. Degrad. Stab. (2017). https://doi.org/10.1016/j.polymdegradstab.2008.10.016
A. Aramvash, Z. Akbari Shahabi, S. Dashti Aghjeh, M.D. Ghafari, Int. J. Environ. Sci. Technol. (2015). https://doi.org/10.1007/s13762-015-0768-3
A.B.H. Yoruç, A. Aydınoğlu, Mater. Sci. Eng. C (2017). https://doi.org/10.1016/j.msec.2017.02.049
J.J. Blaker, V. Maquet, R. Jérôme, A.R. Boccaccini, S.N. Nazhat, Acta Biomater. (2005). https://doi.org/10.1016/j.actbio.2005.07.003
B. Duan, W.L. Cheung, M. Wang, Biofabrication (2011). https://doi.org/10.1088/1758-5082/3/1/015001
X. Ye, L. Li, Z. Lin, W. Yang, M. Duan, L. Chen, Y. Xia, Z. Chen, Y. Lu, Y. Zhang, Carbohydr. Polym. (2018). https://doi.org/10.1016/j.carbpol.2018.08.117
P. Shuai, C. Guo, W. Gao, C. Yang, Y. Xu, Y. Liu, L. Qin, T. Sun, H. Yang, S. Feng, P. Wu, Polymers (2017). https://doi.org/10.3390/polym9050175
N. Ren, L. Yang, T.Y. Zhao, Y.G. Zhao, Key Eng. Mater. (2008). https://doi.org/10.4028/www.scientific.net/kem.368-372.1215
M. Rumpler, A. Woesz, J.W.C. Dunlop, J.T. van Dongen, P. Fratzl, J. R. Soc. Interface (2008). https://doi.org/10.1098/rsif.2008.0064
I. Manjubala, A. Woesz, C. Pilz, M. Rumpler, N. Fratzl-Zelman, P. Roschger, J. Stampfl, P. Fratzl, J. Mater. Sci. Mater. Med. (2005). https://doi.org/10.1007/s10856-005-4715-6
K.W. Lee, S. Wang, M. Dadsetan, M.J. Yaszemski, L. Lu, Biomacromol (2010). https://doi.org/10.1021/bm901260y
Q.L. Loh, C. Choong, Tissue Eng. B (2013). https://doi.org/10.1089/ten.TEB.2012.0437
C.M. Murphy, F.J. O’Brien, Cell. Adh. Migr. (2010). https://doi.org/10.4161/cam.4.3.11747
S.H. Oh, T.H. Kim, G. Il Im, J.H. Lee, Biomacromol (2010). https://doi.org/10.1021/bm100199m
S.J. Lee, I.W. Lee, Y.M. Lee, H.B. Lee, G. Khang, J. Biomater. Sci. Polym. Ed. (2004). https://doi.org/10.1163/1568562041526487
V. Karageorgiou, D. Kaplan, Biomaterials (2005). https://doi.org/10.1016/j.biomaterials.2005.02.002
M. Fernandez-Vicente, W. Calle, S. Ferrandiz, A. Conejero, 3D Print Addit. Manuf. (2016). https://doi.org/10.1089/3dp.2015.0036
B. Akhoundi, A.H. Behravesh, Exp. Mech. (2019). https://doi.org/10.1007/s11340-018-00467-y
C. Abeykoon, P. Sri-Amphorn, A. Fernando, Int. J. Light Mater. Manuf. (2020). https://doi.org/10.1016/j.ijlmm.2020.03.003
A. Kumarasuriyar, R.A. Jackson, L. Grøndahl, M. Trau, V. Nurcombe, S.M. Cool, Tissue Eng. (2005). https://doi.org/10.1089/ten.2005.11.1281
J. Roether, A. Boccaccini, L. Hench, V. Maquet, S. Gautier, R. Jérôme, Biomaterials (2002). https://doi.org/10.1016/S0142-9612(02)00131-X
R. Detsch, O. Guillon, L. Wondraczek, A.R. Boccaccini, Adv. Eng. Mater. (2012). https://doi.org/10.1002/adem.201180068
T. Kokubo, H. Takadama, in Handbook of Biomineralization, ed. by E. Bäuerlein (John Wiley & Sons, Ltd, 2007), p. 97–109
Q.Z. Chen, K. Rezwan, D. Armitage, S.N. Nazhat, A.R. Boccaccini, J. Mater. Sci. Mater. (2006). https://doi.org/10.1007/s10856-006-0433-y
V. Stanić, in Clinical Applications of Biomaterials, ed. by G. Kaur (Springer, New York, 2017), p. 35–63
B. Seed, Curr. Protoc. Mol. Biol. (1994). https://doi.org/10.1002/0471142727.mba03bs28
L.J. Vandi, C.M. Chan, A. Werker, D. Richardson, B. Laycock, S. Pratt, Polym. Degrad. Stab. (2019). https://doi.org/10.1016/j.polymdegradstab.2018.10.015
H.R. Vanaei, K. Raissi, M. Deligant, M. Shirinbayan, J. Fitoussi, S. Khelladi, A. Tcharkhtchi, J. Mater. Sci. (2020). https://doi.org/10.1007/s10853-020-05057-9
T.C. Yang, C.H. Yeh, Polymers (2020). https://doi.org/10.3390/polym12061334
T. Kokubo, H. Takadama, Biomaterials (2006). https://doi.org/10.1016/j.biomaterials.2006.01.017
M.J. Bailey, S. Coe, D.M. Grant, G.W. Grime, C. Jeynes, X-Ray Spectrom. (2009). https://doi.org/10.1002/xrs.1171
S. Schrepfer, T. Deuse, C. Lange, R. Katzenberg, H. Reichenspurner, R.C. Robbins, M.P. Pelletier, Stem Cells Dev. (2007). https://doi.org/10.1089/scd.2006.0041
Acknowledgments
The authors would like to acknowledge PhD. Mariana Hamer for technical support on DRIFT (Nanosystems Institute, ECyT, UNSAM); PhD Cristián Huck for technical support on WAXS (Laboratory of Applied Crystallography, ECyT, UNSAM) and I. D. Adrian Oviedo for technical support on filament extrusion process (Nanotechnology Argentinian Foundation).
Funding
This work was supported by the Program of Bilateral Cooperation Level 1 (PCB-11) with CONICET-BAYLAT (Bayerische Hochschulzentrum für Lateinamerika). Projects of Innovation, Development, and Adoption of 3D Printing Technology, of the Ministry of Science, Technology and Productive Innovation (MINCyT). UNSAM and CONICET.
Author information
Authors and Affiliations
Contributions
BA: Conceptualization, Methodology, Investigation, Writing—Original Draft, Writing—review and Editing, Project Administration. EK, AGW, RD, JB, GG: Methodology, Investigation. ARB: Funding Acquisition, Project Administration, Supervision, Discussion, Review, Resources. ÉBH: Funding Acquisition, Project Administration, Supervision, Discussion, Review, Resources.
Corresponding authors
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Aldo R. Boccaccini was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Aráoz, B., Karakaya, E., González Wusener, A. et al. 3D printed poly(hydroxybutyrate-co-hydroxyvalerate)—45S5 bioactive glass composite resorbable scaffolds suitable for bone regeneration. Journal of Materials Research 36, 4000–4012 (2021). https://doi.org/10.1557/s43578-021-00272-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43578-021-00272-9