Skip to main content
Log in

3D printed poly(hydroxybutyrate-co-hydroxyvalerate)—45S5 bioactive glass composite resorbable scaffolds suitable for bone regeneration

  • Article
  • Focus Issue: 3D Printing of Biomedical Materials and Devices
  • Published:
  • volume 36pages 4000–4012 (2021)
Journal of Materials Research Aims and scope Submit manuscript

Cite this article

Abstract

3D printing for tissue engineering requires biomaterials with mechanical and biological properties suitable for both tissue regeneration and the printing process. A filament made of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) combined with 45S5 Bioglass (BG) was used to print 3D scaffolds by fused deposition modeling (FDM). Chemical treatment of BG particles with chlorotrimethylsilane (CTMS) improved the ductility of the extruded filaments and allowed excellent printability. Controlling the printing parameter infill density (I%), from 20 to 90%, scaffolds were obtained with interconnected pores and channel sizes in the 100–800 µm range and exhibiting tensile modulus from 0.25 to 1.36 GPa. PHBV + BG scaffolds and PHBV scaffolds coated with CTMS treated BG particles, as a model of a rough and biologically active coating, showed no cytotoxic effects, and cells preferred the scaffolds containing BG in terms of cell spreading. Mechanical and biological properties of the scaffolds were similar to those of the extracellular matrix (ECM) of trabecular bone.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. P. Tack, J. Victor, P. Gemmel, L. Annemans, Biomed. Eng. Online (2016). https://doi.org/10.1186/s12938-016-0236-4

    Article  Google Scholar 

  2. E.F. Morgan, G.U. Unnikrisnan, A.I. Hussein, Annu. Rev. Biomed. Eng. (2018). https://doi.org/10.1146/annurev-bioeng-062117-121139

    Article  Google Scholar 

  3. H. Li, R. Du, J. Chang, J. Biomater. Appl. (2005). https://doi.org/10.1177/0885328205049472

    Article  Google Scholar 

  4. J. Wu, K. Xue, H. Li, J. Sun, K. Liu, PLoS ONE (2013). https://doi.org/10.1371/journal.pone.0071563

    Article  Google Scholar 

  5. L.L. Hench, J. Mater. Sci. Mater. Med. (2006). https://doi.org/10.1007/s10856-006-0432-z

    Article  Google Scholar 

  6. J.R. Jones, Acta Biomater. (2013). https://doi.org/10.1016/j.actbio.2012.08.023

    Article  Google Scholar 

  7. L.L. Hench, J. Eur. Ceram. Soc. (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.08.002

    Article  Google Scholar 

  8. H. Yuan, J.D. de Bruijn, X. Zhang, C.A. van Blitterswijk, K. de Groot, J. Biomed. Mater. Res. (2001). https://doi.org/10.1002/1097-4636(2001)58:3%3c270::aid-jbm1016%3e3.0.co;2-2

    Article  Google Scholar 

  9. K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini, Biomaterials (2006). https://doi.org/10.1016/j.biomaterials.2006.01.039

    Article  Google Scholar 

  10. E. Fukada, Y. Ando, Int. J. Biol. Macromol. (1986). https://doi.org/10.1016/0141-8130(86)90056-5

    Article  Google Scholar 

  11. S. Gogolewski, M. Jovanovic, S.M. Perren, J.G. Dillon, M.K. Hughes, J. Biomed. Mater. Res. (1993). https://doi.org/10.1002/jbm.820270904

    Article  Google Scholar 

  12. I. Manavitehrani, A. Fathi, H. Badr, S. Daly, A. Negahi Shirazi, F. Dehghani, Polymers (Basel) (2016). https://doi.org/10.3390/polym8010020

    Article  Google Scholar 

  13. S. Bose, S. Vahabzadeh, A. Bandyopadhyay, Mater. Today (2013). https://doi.org/10.1016/j.mattod.2013.11.017

    Article  Google Scholar 

  14. S. Zhao, M. Zhu, J. Zhang, Y. Zhang, Z. Liu, Y. Zhu, C. Zhang, J. Mater. Chem. B (2014). https://doi.org/10.1039/c4tb00838c

    Article  Google Scholar 

  15. M.A. Vigil Fuentes, S. Thakur, F. Wu, M. Misra, S. Gregori, A.K. Mohanty, Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-68331-5

    Article  Google Scholar 

  16. Á. Rivera-Briso, A. Serrano-Aroca, Polymers (2018). https://doi.org/10.3390/polym10070732

    Article  Google Scholar 

  17. B. Marelli, C.E. Ghezzi, J.E. Barralet, A.R. Boccaccini, S.N. Nazhat, Biomacromol (2010). https://doi.org/10.1021/bm1001087

    Article  Google Scholar 

  18. Q. Fu, N. Zhou, W. Huang, D. Wang, L. Zhang, H. Li, J. Mater. Sci. Mater. Med. (2004). https://doi.org/10.1007/s10856-004-5742-4

    Article  Google Scholar 

  19. A. Tilocca, N.H. de Leeuw, J. Phys. Chem. B (2006). https://doi.org/10.1021/jp065146k

    Article  Google Scholar 

  20. L. Lefebvre, J. Chevalier, L. Gremillard, R. Zenati, G. Thollet, D. Bernache-Assolant, A. Govin, Acta Mater. (2007). https://doi.org/10.1016/j.actamat.2007.01.029

    Article  Google Scholar 

  21. C. Rodriguez-Navarro, L. Linares-Fernandez, E. Doehne, E. Sebastian, J. Cryst. Growth (2002). https://doi.org/10.1016/S0022-0248(02)01499-9

    Article  Google Scholar 

  22. T. Annen, M. Epple, J. Chem. Soc. Dalton Trans. (2009). https://doi.org/10.1039/b911047j

    Article  Google Scholar 

  23. Q. Liu, M. Zhu, W. Wu, Z. Qin, Polym. Degrad. Stab. (2017). https://doi.org/10.1016/j.polymdegradstab.2008.10.016

    Article  Google Scholar 

  24. A. Aramvash, Z. Akbari Shahabi, S. Dashti Aghjeh, M.D. Ghafari, Int. J. Environ. Sci. Technol. (2015). https://doi.org/10.1007/s13762-015-0768-3

    Article  Google Scholar 

  25. A.B.H. Yoruç, A. Aydınoğlu, Mater. Sci. Eng. C (2017). https://doi.org/10.1016/j.msec.2017.02.049

    Article  Google Scholar 

  26. J.J. Blaker, V. Maquet, R. Jérôme, A.R. Boccaccini, S.N. Nazhat, Acta Biomater. (2005). https://doi.org/10.1016/j.actbio.2005.07.003

    Article  Google Scholar 

  27. B. Duan, W.L. Cheung, M. Wang, Biofabrication (2011). https://doi.org/10.1088/1758-5082/3/1/015001

    Article  Google Scholar 

  28. X. Ye, L. Li, Z. Lin, W. Yang, M. Duan, L. Chen, Y. Xia, Z. Chen, Y. Lu, Y. Zhang, Carbohydr. Polym. (2018). https://doi.org/10.1016/j.carbpol.2018.08.117

    Article  Google Scholar 

  29. P. Shuai, C. Guo, W. Gao, C. Yang, Y. Xu, Y. Liu, L. Qin, T. Sun, H. Yang, S. Feng, P. Wu, Polymers (2017). https://doi.org/10.3390/polym9050175

    Article  Google Scholar 

  30. N. Ren, L. Yang, T.Y. Zhao, Y.G. Zhao, Key Eng. Mater. (2008). https://doi.org/10.4028/www.scientific.net/kem.368-372.1215

    Article  Google Scholar 

  31. M. Rumpler, A. Woesz, J.W.C. Dunlop, J.T. van Dongen, P. Fratzl, J. R. Soc. Interface (2008). https://doi.org/10.1098/rsif.2008.0064

    Article  Google Scholar 

  32. I. Manjubala, A. Woesz, C. Pilz, M. Rumpler, N. Fratzl-Zelman, P. Roschger, J. Stampfl, P. Fratzl, J. Mater. Sci. Mater. Med. (2005). https://doi.org/10.1007/s10856-005-4715-6

    Article  Google Scholar 

  33. K.W. Lee, S. Wang, M. Dadsetan, M.J. Yaszemski, L. Lu, Biomacromol (2010). https://doi.org/10.1021/bm901260y

    Article  Google Scholar 

  34. Q.L. Loh, C. Choong, Tissue Eng. B (2013). https://doi.org/10.1089/ten.TEB.2012.0437

    Article  Google Scholar 

  35. C.M. Murphy, F.J. O’Brien, Cell. Adh. Migr. (2010). https://doi.org/10.4161/cam.4.3.11747

    Article  Google Scholar 

  36. S.H. Oh, T.H. Kim, G. Il Im, J.H. Lee, Biomacromol (2010). https://doi.org/10.1021/bm100199m

    Article  Google Scholar 

  37. S.J. Lee, I.W. Lee, Y.M. Lee, H.B. Lee, G. Khang, J. Biomater. Sci. Polym. Ed. (2004). https://doi.org/10.1163/1568562041526487

    Article  Google Scholar 

  38. V. Karageorgiou, D. Kaplan, Biomaterials (2005). https://doi.org/10.1016/j.biomaterials.2005.02.002

    Article  Google Scholar 

  39. M. Fernandez-Vicente, W. Calle, S. Ferrandiz, A. Conejero, 3D Print Addit. Manuf. (2016). https://doi.org/10.1089/3dp.2015.0036

    Article  Google Scholar 

  40. B. Akhoundi, A.H. Behravesh, Exp. Mech. (2019). https://doi.org/10.1007/s11340-018-00467-y

    Article  Google Scholar 

  41. C. Abeykoon, P. Sri-Amphorn, A. Fernando, Int. J. Light Mater. Manuf. (2020). https://doi.org/10.1016/j.ijlmm.2020.03.003

    Article  Google Scholar 

  42. A. Kumarasuriyar, R.A. Jackson, L. Grøndahl, M. Trau, V. Nurcombe, S.M. Cool, Tissue Eng. (2005). https://doi.org/10.1089/ten.2005.11.1281

    Article  Google Scholar 

  43. J. Roether, A. Boccaccini, L. Hench, V. Maquet, S. Gautier, R. Jérôme, Biomaterials (2002). https://doi.org/10.1016/S0142-9612(02)00131-X

    Article  Google Scholar 

  44. R. Detsch, O. Guillon, L. Wondraczek, A.R. Boccaccini, Adv. Eng. Mater. (2012). https://doi.org/10.1002/adem.201180068

    Article  Google Scholar 

  45. T. Kokubo, H. Takadama, in Handbook of Biomineralization, ed. by E. Bäuerlein (John Wiley & Sons, Ltd, 2007), p. 97–109

  46. Q.Z. Chen, K. Rezwan, D. Armitage, S.N. Nazhat, A.R. Boccaccini, J. Mater. Sci. Mater. (2006). https://doi.org/10.1007/s10856-006-0433-y

    Article  Google Scholar 

  47. V. Stanić, in Clinical Applications of Biomaterials, ed. by G. Kaur (Springer, New York, 2017), p. 35–63

  48. B. Seed, Curr. Protoc. Mol. Biol. (1994). https://doi.org/10.1002/0471142727.mba03bs28

    Article  Google Scholar 

  49. L.J. Vandi, C.M. Chan, A. Werker, D. Richardson, B. Laycock, S. Pratt, Polym. Degrad. Stab. (2019). https://doi.org/10.1016/j.polymdegradstab.2018.10.015

    Article  Google Scholar 

  50. H.R. Vanaei, K. Raissi, M. Deligant, M. Shirinbayan, J. Fitoussi, S. Khelladi, A. Tcharkhtchi, J. Mater. Sci. (2020). https://doi.org/10.1007/s10853-020-05057-9

    Article  Google Scholar 

  51. T.C. Yang, C.H. Yeh, Polymers (2020). https://doi.org/10.3390/polym12061334

    Article  Google Scholar 

  52. T. Kokubo, H. Takadama, Biomaterials (2006). https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  Google Scholar 

  53. M.J. Bailey, S. Coe, D.M. Grant, G.W. Grime, C. Jeynes, X-Ray Spectrom. (2009). https://doi.org/10.1002/xrs.1171

    Article  Google Scholar 

  54. S. Schrepfer, T. Deuse, C. Lange, R. Katzenberg, H. Reichenspurner, R.C. Robbins, M.P. Pelletier, Stem Cells Dev. (2007). https://doi.org/10.1089/scd.2006.0041

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge PhD. Mariana Hamer for technical support on DRIFT (Nanosystems Institute, ECyT, UNSAM); PhD Cristián Huck for technical support on WAXS (Laboratory of Applied Crystallography, ECyT, UNSAM) and I. D. Adrian Oviedo for technical support on filament extrusion process (Nanotechnology Argentinian Foundation).

Funding

This work was supported by the Program of Bilateral Cooperation Level 1 (PCB-11) with CONICET-BAYLAT (Bayerische Hochschulzentrum für Lateinamerika). Projects of Innovation, Development, and Adoption of 3D Printing Technology, of the Ministry of Science, Technology and Productive Innovation (MINCyT). UNSAM and CONICET.

Author information

Authors and Affiliations

Authors

Contributions

BA: Conceptualization, Methodology, Investigation, Writing—Original Draft, Writing—review and Editing, Project Administration. EK, AGW, RD, JB, GG: Methodology, Investigation. ARB: Funding Acquisition, Project Administration, Supervision, Discussion, Review, Resources. ÉBH: Funding Acquisition, Project Administration, Supervision, Discussion, Review, Resources.

Corresponding authors

Correspondence to Beatriz Aráoz or Aldo R. Boccaccini.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Aldo R. Boccaccini was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2423 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aráoz, B., Karakaya, E., González Wusener, A. et al. 3D printed poly(hydroxybutyrate-co-hydroxyvalerate)—45S5 bioactive glass composite resorbable scaffolds suitable for bone regeneration. Journal of Materials Research 36, 4000–4012 (2021). https://doi.org/10.1557/s43578-021-00272-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00272-9

Keywords

Navigation