Abstract
This work is focused on the design and development of carbon-supported NiSn alloys by using the intermittent microwave heating polyol process. The electrocatalysts were synthesized under different sequences of irradiation time and Ni:Sn ratios. X-ray diffraction (XRD) measurements showed that NiSn/C electrocatalysts have a displacement to lower 2θ angles with respect to Ni/C electrocatalysts, as consecuence of some degree of alloy formation. The cyclic voltammograms show that NiSn/C are active for ethanol oxidation and the rate of reaction decreases as the concentration of ethanol increases to 2 mol L−1. Some NiSn nanomaterials present better stability compared with Ni/C and this feature can be due to the beneficial effect of Sn. Therefore, it is demonstrated that intermittent microwave irradiation is a potential method to synthetize in a short time and in large-scale NiSn alloy that can be used in direct alcohol fuel cells.
Graphic abstract
Similar content being viewed by others
References
J. Guo, Y. Li, Y. Cheng, L. Dai, Z. Xiang, ACS Nano (2017). https://doi.org/10.1021/acsnano.7b03807
J.A. Kumar, P. Kalyani, R. Saravanan, Int. J. Electrochem. Sci. 44, 3393 (2008)
J. Li, Z. Luo, Y. Zuo, J. Liu, T. Zhang, P. Tang, J. Arbiol, J. Llorca, A. Cabot, Appl. Catal. B (2018). https://doi.org/10.1016/j.apcatb.2018.04.017
A.N. Vyas, G.D. Saratale, S.D. Sartale, Int. J. Hydrogen Energy (2020). https://doi.org/10.1016/j.ijhydene.2019.08.218
M.Z.F. Kamarudin, S.K. Kamarudin, M.S. Masdar, W.R.W. Daud, Int. J. Hydrogen Energy (2013). https://doi.org/10.1016/j.ijhydene.2012.07.059
H. Pramanik, A.A. Wragg, S. Basu, J. Appl. Electrochem. (2008). https://doi.org/10.1007/s10800-008-9560-0
W.J. Zhou, S.Q. Song, W.Z. Li, G.Q. Sun, Q. Xin, S. Kontou, K. Poulianitis, P. Tsiakaras, Solid State Ionics (2004). https://doi.org/10.1016/j.ssi.2004.09.055
Y.-Y. Chu, Z.-B. Wang, D.-M. Gu, G.-P. Yin, J. Power Sources (2010). https://doi.org/10.1016/j.jpowsour.2009.10.039
K. Zhang, C. Feng, B. He, H. Dong, W. Dai, H. Lu, X. Zhang, J. Electroanal. Chem. (2016). https://doi.org/10.1016/j.jelechem.2016.11.002
J.R.C. Salgado, R.G. Duarte, L.M. Ilharco, A.M. Botelho do Rego, A.M. Ferraria, M.G.S. Ferreira, Appl. Catal. B (2011). https://doi.org/10.1016/j.apcatb.2010.12.031
M. Jafarian, R.B. Moghaddam, M.G. Mahjani, F. Gobal, J. Appl. Electrochem. (2006). https://doi.org/10.1007/s10800-006-9155-6
J. Taraszewska, G. Rosłonek, J. Electroanal. Chem. (1994). https://doi.org/10.1016/0022-0728(93)02919-9
S. Dessources, D.X. del Jesús González-Quijano, W.J. Pech-Rodríguez, in Advanced Electrocatalysts for Low-Temperature Fuel Cells, ed. by F.J. Rodríguez-Varela, T.W. Napporn. (Springer, Cham, 2018)
I. Danaee, M. Jafarian, F. Forouzandeh, F. Gobal, M.G. Mahjani, Int. J. Hydrogen Energy (2008). https://doi.org/10.1016/j.ijhydene.2008.05.075
A.F.B. Barbosa, V.L. Oliveira, J. van Drunen, G. Tremiliosi-Filho, J. Electroanal. Chem. (2015). https://doi.org/10.1016/j.jelechem.2015.03.024
D. Martín-Yerga, G. Henriksson, A. Cornell, Electrocatalysis (2019). https://doi.org/10.1007/s12678-019-00531-8
A.N. Vyas, M.A. Desai, D.M. Phase, R.G. Saratale, J.D. Ambekar, B.B. Kale, H.M. Pathan, S.D. Sartale, New J. Chem. (2019). https://doi.org/10.1039/C8NJ04984J
A. Cuña, C. Reyes Plascencia, E.L. da Silva, J. Marcuzzo, S. Khan, N. Tancredi, M.R. Baldan, C. de Fraga Malfatti, Appl. Catal. B (2017). https://doi.org/10.1016/j.apcatb.2016.08.063
D.S. Hall, D.J. Lockwood, C. Bock, B.R. MacDougall, Proc. R. Soc. A (2015). https://doi.org/10.1098/rspa.2014.0792
Y. Gu, J. Luo, Y. Liu, H. Yang, R. Ouyang, Y. Miao, J. Nanosci. Nanotechnol. (2015). https://doi.org/10.1166/jnn.2015.9528
A. Prabhakarn, S. Nagarani, P. Saradh, S.A. Mohamad, M.A.-M. Abdullah, A. Meera Moydeen, G. Sasikala, Mater. Res. Express (2018)
S. Tahmasebi, S. Jahangiri, N. Mosey, G. Jerkiewicz, A. Mark, S. Cheng, G. Botton, S. Baranton, C. Coutanceau, ACS Appl. Energy Mater. (2020). https://doi.org/10.1021/acsaem.0c00483
N.A.M. Barakat, M.T. Amen, F.S. Al-Mubaddel, M.R. Karim, M. Alrashed, J. Adv. Res. (2019). https://doi.org/10.1016/j.jare.2018.12.003
Z. Zhuang, S.A. Giles, J. Zheng, G.R. Jenness, S. Caratzoulas, D.G. Vlachos, Y. Yan, Nat. Commun. (2016). https://doi.org/10.1038/ncomms10141
H. Liu, J. Xu, G. Liu, M. Wang, J. Li, Y. Liu, H. Cui, J. Mater. Sci. (2018). https://doi.org/10.1007/s10853-018-2705-6
G.-R. Fu, Z.-A. Hu, L.-J. Xie, X.-Q. Jim, Y.-L. Xie, Y.-X. Wang, Z.-Y. Zhang, Y.-Y. Yang, H.-Y. Wu, Int. J. Electrochem. Sci. 4, 1052 (2009)
Y. Garcia-Basabe, R.G.C. De Souza Dos, R.O.R.R. da Reis, D.G.L. Cunha, K.D. Sossmeier, J.R.C. Salgado, Electrocatalysis (2020). https://doi.org/10.1007/s12678-019-00578-7
Y. Yang, L. Chen, Y. Chen, W. Liu, H. Feng, B. Wang, X. Zhang, M. Wei, Green Chem. (2019). https://doi.org/10.1039/C9GC01119F
R.F.B. De Souza, L.S. Parreira, D.C. Rascio, J.C.M. Silva, E. Teixeira-Neto, M.L. Calegaro, E.V. Spinace, A.O. Neto, M.C. Santos, J. Power Sources (2010). https://doi.org/10.1016/j.jpowsour.2009.09.065
K.J. Carroll, J.U. Reveles, M.D. Shultz, S.N. Khanna, E.E. Carpenter, J. Phys. Chem. C (2011). https://doi.org/10.1021/jp1104196
L. Bai, J. Fan, Y. Cao, F. Yuan, A. Zuo, Q. Tang, J. Cryst. Growth (2009). https://doi.org/10.1016/j.jcrysgro.2009.02.009
N.R.N. Roselina, A. Azizan, K.M. Hyie, A. Jumahat, M.A.A. Bakar, Procedia Eng. (2013). https://doi.org/10.1016/j.proeng.2013.12.145
J. Yang, T.C. Deivaraj, H.-P. Too, J.Y. Lee, Langmuir (2004). https://doi.org/10.1021/la0361159
Z. Zhou, S. Wang, W. Zhou, G. Wang, L. Jiang, W. Li, S. Song, J. Liu, G. Sun, Q. Xin, Chem. Commun. (2003). https://doi.org/10.1039/B211075J
M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa, T. Tsuji, Chemistry (2005). https://doi.org/10.1002/chem.200400417
S. Qiu, H. Lyu, J. Liu, Y. Liu, N. Wu, W. Liu, ACS Appl. Mater. Interfaces. (2016). https://doi.org/10.1021/acsami.6b03159
Z. Zhang, L. Xin, K. Sun, W. Li, Int. J. Hydrogen Energy (2011). https://doi.org/10.1016/j.ijhydene.2011.06.141
Y. Liu, J. Luo, C. Helleu, M. Behr, H. Ba, T. Romero, A. Hébraud, G. Schlatter, O. Ersen, D.S. Su, C. Pham-Huu, J. Mater. Chem. A (2017). https://doi.org/10.1039/C6TA09414G
T.S. Almeida, L.M. Palma, P.H. Leonello, C. Morais, K.B. Kokoh, A.R. De Andrade, J. Power Sources (2012). https://doi.org/10.1016/j.jpowsour.2012.04.061
D. González-Quijano, W.J. Pech-Rodríguez, J.I. Escalante-García, G. Vargas-Gutiérrez, F.J. Rodríguez-Varela, Int. J. Hydrogen Energy (2014). https://doi.org/10.1016/j.ijhydene.2014.04.125
C.S. Carney, R.E. Chinn, Ö.N. Doğan, M.C. Gao, J. Alloys Compd. (2015). https://doi.org/10.1016/j.jallcom.2015.03.256
L.-P. Zhu, G.-H. Liao, Y. Yang, H.-M. Xiao, J.-F. Wang, S.-Y. Fu, Nanoscale Res. Lett. (2009). https://doi.org/10.1007/s11671-009-9279-9
X. Cui, W. Guo, M. Zhou, Y. Yang, Y. Li, P. Xiao, Y. Zhang, X. Zhang, ACS Appl. Mater. Interfaces. (2015). https://doi.org/10.1021/am506554b
M.G. Hosseini, M.M. Momeni, M. Faraji, Electroanalysis (2010). https://doi.org/10.1002/elan.200900620
M.A. Ghanem, A.M. Al-Mayouf, J.P. Singh, T. Abiti, F. Marken, J. Electrochem. Soc. (2015). https://doi.org/10.1149/2.0441507jes
M. Fleischmann, K. Korinek, D. Pletcher, J. Electroanal. Chem. Interfacial Electrochem. (1971). https://doi.org/10.1016/S0022-0728(71)80040-2
M.W. Khalil, M.A. Abdel Rahim, A. Zimmer, H.B. Hassan, R.M. Abdel Hameed, J. Power Sources (2005). https://doi.org/10.1016/j.jpowsour.2004.12.014
Q. Zhang, T. Chen, R. Jiang, F. Jiang, RSC Adv. (2020). https://doi.org/10.1039/D0RA00483A
Q.-F. Yi, W. Huang, W.-Q. Yu, L. Li, X.-P. Liu, Chin. J. Chem. (2008). https://doi.org/10.1002/cjoc.200890249
N.A.M. Barakat, H.M. Moustafa, M.M. Nassar, M.A. Abdelkareem, M.S. Mahmoud, A.A. Almajid, K.A. Khalil, Electrochim. Acta (2015). https://doi.org/10.1016/j.electacta.2015.09.079
Acknowledgments
LR. Vidales-Gallardo thanks CONACYT for the scholarship granted to pursue a master’s degree. In addition, LR. Vidales-Gallardo is grateful for the help received from the professors of the Polytechnic University of Victoria, especially because the road so far has not been easy, but thanks to their contributions, support, and effort, this research has been concluded. Thanks to Dr. W.J. Pech-Rodríguez for his good teaching and advice.
Funding
There is no funding to declare.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The author states that there are no conflicts of interest.
Rights and permissions
About this article
Cite this article
Vidales-Gallardo, L.R., Armendáriz-Mireles, E.N., Suarez-Velázquez, G.G. et al. Green and cost-effective synthesis of NiSn alloys by using intermittent microwave heating process as electrocatalysts for ethanol oxidation in alkaline solution. Journal of Materials Research 36, 4207–4215 (2021). https://doi.org/10.1557/s43578-021-00271-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43578-021-00271-w