Skip to main content
Log in

Green and cost-effective synthesis of NiSn alloys by using intermittent microwave heating process as electrocatalysts for ethanol oxidation in alkaline solution

  • Article
  • Focus Issue: Advanced Nanocatalysts for Electrochemical Energy Storage and Generation
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This work is focused on the design and development of carbon-supported NiSn alloys by using the intermittent microwave heating polyol process. The electrocatalysts were synthesized under different sequences of irradiation time and Ni:Sn ratios. X-ray diffraction (XRD) measurements showed that NiSn/C electrocatalysts have a displacement to lower 2θ angles with respect to Ni/C electrocatalysts, as consecuence of some degree of alloy formation. The cyclic voltammograms show that NiSn/C are active for ethanol oxidation and the rate of reaction decreases as the concentration of ethanol increases to 2 mol L−1. Some NiSn nanomaterials present better stability compared with Ni/C and this feature can be due to the beneficial effect of Sn. Therefore, it is demonstrated that intermittent microwave irradiation is a potential method to synthetize in a short time and in large-scale NiSn alloy that can be used in direct alcohol fuel cells.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. J. Guo, Y. Li, Y. Cheng, L. Dai, Z. Xiang, ACS Nano (2017). https://doi.org/10.1021/acsnano.7b03807

    Article  Google Scholar 

  2. J.A. Kumar, P. Kalyani, R. Saravanan, Int. J. Electrochem. Sci. 44, 3393 (2008)

    Google Scholar 

  3. J. Li, Z. Luo, Y. Zuo, J. Liu, T. Zhang, P. Tang, J. Arbiol, J. Llorca, A. Cabot, Appl. Catal. B (2018). https://doi.org/10.1016/j.apcatb.2018.04.017

    Article  Google Scholar 

  4. A.N. Vyas, G.D. Saratale, S.D. Sartale, Int. J. Hydrogen Energy (2020). https://doi.org/10.1016/j.ijhydene.2019.08.218

    Article  Google Scholar 

  5. M.Z.F. Kamarudin, S.K. Kamarudin, M.S. Masdar, W.R.W. Daud, Int. J. Hydrogen Energy (2013). https://doi.org/10.1016/j.ijhydene.2012.07.059

    Article  Google Scholar 

  6. H. Pramanik, A.A. Wragg, S. Basu, J. Appl. Electrochem. (2008). https://doi.org/10.1007/s10800-008-9560-0

    Article  Google Scholar 

  7. W.J. Zhou, S.Q. Song, W.Z. Li, G.Q. Sun, Q. Xin, S. Kontou, K. Poulianitis, P. Tsiakaras, Solid State Ionics (2004). https://doi.org/10.1016/j.ssi.2004.09.055

    Article  Google Scholar 

  8. Y.-Y. Chu, Z.-B. Wang, D.-M. Gu, G.-P. Yin, J. Power Sources (2010). https://doi.org/10.1016/j.jpowsour.2009.10.039

    Article  Google Scholar 

  9. K. Zhang, C. Feng, B. He, H. Dong, W. Dai, H. Lu, X. Zhang, J. Electroanal. Chem. (2016). https://doi.org/10.1016/j.jelechem.2016.11.002

    Article  Google Scholar 

  10. J.R.C. Salgado, R.G. Duarte, L.M. Ilharco, A.M. Botelho do Rego, A.M. Ferraria, M.G.S. Ferreira, Appl. Catal. B (2011). https://doi.org/10.1016/j.apcatb.2010.12.031

    Article  Google Scholar 

  11. M. Jafarian, R.B. Moghaddam, M.G. Mahjani, F. Gobal, J. Appl. Electrochem. (2006). https://doi.org/10.1007/s10800-006-9155-6

    Article  Google Scholar 

  12. J. Taraszewska, G. Rosłonek, J. Electroanal. Chem. (1994). https://doi.org/10.1016/0022-0728(93)02919-9

    Article  Google Scholar 

  13. S. Dessources, D.X. del Jesús González-Quijano, W.J. Pech-Rodríguez, in Advanced Electrocatalysts for Low-Temperature Fuel Cells, ed. by F.J. Rodríguez-Varela, T.W. Napporn. (Springer, Cham, 2018)

  14. I. Danaee, M. Jafarian, F. Forouzandeh, F. Gobal, M.G. Mahjani, Int. J. Hydrogen Energy (2008). https://doi.org/10.1016/j.ijhydene.2008.05.075

    Article  Google Scholar 

  15. A.F.B. Barbosa, V.L. Oliveira, J. van Drunen, G. Tremiliosi-Filho, J. Electroanal. Chem. (2015). https://doi.org/10.1016/j.jelechem.2015.03.024

    Article  Google Scholar 

  16. D. Martín-Yerga, G. Henriksson, A. Cornell, Electrocatalysis (2019). https://doi.org/10.1007/s12678-019-00531-8

    Article  Google Scholar 

  17. A.N. Vyas, M.A. Desai, D.M. Phase, R.G. Saratale, J.D. Ambekar, B.B. Kale, H.M. Pathan, S.D. Sartale, New J. Chem. (2019). https://doi.org/10.1039/C8NJ04984J

    Article  Google Scholar 

  18. A. Cuña, C. Reyes Plascencia, E.L. da Silva, J. Marcuzzo, S. Khan, N. Tancredi, M.R. Baldan, C. de Fraga Malfatti, Appl. Catal. B (2017). https://doi.org/10.1016/j.apcatb.2016.08.063

    Article  Google Scholar 

  19. D.S. Hall, D.J. Lockwood, C. Bock, B.R. MacDougall, Proc. R. Soc. A (2015). https://doi.org/10.1098/rspa.2014.0792

    Article  Google Scholar 

  20. Y. Gu, J. Luo, Y. Liu, H. Yang, R. Ouyang, Y. Miao, J. Nanosci. Nanotechnol. (2015). https://doi.org/10.1166/jnn.2015.9528

    Article  Google Scholar 

  21. A. Prabhakarn, S. Nagarani, P. Saradh, S.A. Mohamad, M.A.-M. Abdullah, A. Meera Moydeen, G. Sasikala, Mater. Res. Express (2018)

  22. S. Tahmasebi, S. Jahangiri, N. Mosey, G. Jerkiewicz, A. Mark, S. Cheng, G. Botton, S. Baranton, C. Coutanceau, ACS Appl. Energy Mater. (2020). https://doi.org/10.1021/acsaem.0c00483

    Article  Google Scholar 

  23. N.A.M. Barakat, M.T. Amen, F.S. Al-Mubaddel, M.R. Karim, M. Alrashed, J. Adv. Res. (2019). https://doi.org/10.1016/j.jare.2018.12.003

    Article  Google Scholar 

  24. Z. Zhuang, S.A. Giles, J. Zheng, G.R. Jenness, S. Caratzoulas, D.G. Vlachos, Y. Yan, Nat. Commun. (2016). https://doi.org/10.1038/ncomms10141

    Article  Google Scholar 

  25. H. Liu, J. Xu, G. Liu, M. Wang, J. Li, Y. Liu, H. Cui, J. Mater. Sci. (2018). https://doi.org/10.1007/s10853-018-2705-6

    Article  Google Scholar 

  26. G.-R. Fu, Z.-A. Hu, L.-J. Xie, X.-Q. Jim, Y.-L. Xie, Y.-X. Wang, Z.-Y. Zhang, Y.-Y. Yang, H.-Y. Wu, Int. J. Electrochem. Sci. 4, 1052 (2009)

    CAS  Google Scholar 

  27. Y. Garcia-Basabe, R.G.C. De Souza Dos, R.O.R.R. da Reis, D.G.L. Cunha, K.D. Sossmeier, J.R.C. Salgado, Electrocatalysis (2020). https://doi.org/10.1007/s12678-019-00578-7

    Article  Google Scholar 

  28. Y. Yang, L. Chen, Y. Chen, W. Liu, H. Feng, B. Wang, X. Zhang, M. Wei, Green Chem. (2019). https://doi.org/10.1039/C9GC01119F

    Article  Google Scholar 

  29. R.F.B. De Souza, L.S. Parreira, D.C. Rascio, J.C.M. Silva, E. Teixeira-Neto, M.L. Calegaro, E.V. Spinace, A.O. Neto, M.C. Santos, J. Power Sources (2010). https://doi.org/10.1016/j.jpowsour.2009.09.065

    Article  Google Scholar 

  30. K.J. Carroll, J.U. Reveles, M.D. Shultz, S.N. Khanna, E.E. Carpenter, J. Phys. Chem. C (2011). https://doi.org/10.1021/jp1104196

    Article  Google Scholar 

  31. L. Bai, J. Fan, Y. Cao, F. Yuan, A. Zuo, Q. Tang, J. Cryst. Growth (2009). https://doi.org/10.1016/j.jcrysgro.2009.02.009

    Article  Google Scholar 

  32. N.R.N. Roselina, A. Azizan, K.M. Hyie, A. Jumahat, M.A.A. Bakar, Procedia Eng. (2013). https://doi.org/10.1016/j.proeng.2013.12.145

    Article  Google Scholar 

  33. J. Yang, T.C. Deivaraj, H.-P. Too, J.Y. Lee, Langmuir (2004). https://doi.org/10.1021/la0361159

    Article  Google Scholar 

  34. Z. Zhou, S. Wang, W. Zhou, G. Wang, L. Jiang, W. Li, S. Song, J. Liu, G. Sun, Q. Xin, Chem. Commun. (2003). https://doi.org/10.1039/B211075J

    Article  Google Scholar 

  35. M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa, T. Tsuji, Chemistry (2005). https://doi.org/10.1002/chem.200400417

    Article  Google Scholar 

  36. S. Qiu, H. Lyu, J. Liu, Y. Liu, N. Wu, W. Liu, ACS Appl. Mater. Interfaces. (2016). https://doi.org/10.1021/acsami.6b03159

    Article  Google Scholar 

  37. Z. Zhang, L. Xin, K. Sun, W. Li, Int. J. Hydrogen Energy (2011). https://doi.org/10.1016/j.ijhydene.2011.06.141

    Article  Google Scholar 

  38. Y. Liu, J. Luo, C. Helleu, M. Behr, H. Ba, T. Romero, A. Hébraud, G. Schlatter, O. Ersen, D.S. Su, C. Pham-Huu, J. Mater. Chem. A (2017). https://doi.org/10.1039/C6TA09414G

    Article  Google Scholar 

  39. T.S. Almeida, L.M. Palma, P.H. Leonello, C. Morais, K.B. Kokoh, A.R. De Andrade, J. Power Sources (2012). https://doi.org/10.1016/j.jpowsour.2012.04.061

    Article  Google Scholar 

  40. D. González-Quijano, W.J. Pech-Rodríguez, J.I. Escalante-García, G. Vargas-Gutiérrez, F.J. Rodríguez-Varela, Int. J. Hydrogen Energy (2014). https://doi.org/10.1016/j.ijhydene.2014.04.125

    Article  Google Scholar 

  41. C.S. Carney, R.E. Chinn, Ö.N. Doğan, M.C. Gao, J. Alloys Compd. (2015). https://doi.org/10.1016/j.jallcom.2015.03.256

    Article  Google Scholar 

  42. L.-P. Zhu, G.-H. Liao, Y. Yang, H.-M. Xiao, J.-F. Wang, S.-Y. Fu, Nanoscale Res. Lett. (2009). https://doi.org/10.1007/s11671-009-9279-9

    Article  Google Scholar 

  43. X. Cui, W. Guo, M. Zhou, Y. Yang, Y. Li, P. Xiao, Y. Zhang, X. Zhang, ACS Appl. Mater. Interfaces. (2015). https://doi.org/10.1021/am506554b

    Article  Google Scholar 

  44. M.G. Hosseini, M.M. Momeni, M. Faraji, Electroanalysis (2010). https://doi.org/10.1002/elan.200900620

    Article  Google Scholar 

  45. M.A. Ghanem, A.M. Al-Mayouf, J.P. Singh, T. Abiti, F. Marken, J. Electrochem. Soc. (2015). https://doi.org/10.1149/2.0441507jes

    Article  Google Scholar 

  46. M. Fleischmann, K. Korinek, D. Pletcher, J. Electroanal. Chem. Interfacial Electrochem. (1971). https://doi.org/10.1016/S0022-0728(71)80040-2

    Article  Google Scholar 

  47. M.W. Khalil, M.A. Abdel Rahim, A. Zimmer, H.B. Hassan, R.M. Abdel Hameed, J. Power Sources (2005). https://doi.org/10.1016/j.jpowsour.2004.12.014

    Article  Google Scholar 

  48. Q. Zhang, T. Chen, R. Jiang, F. Jiang, RSC Adv. (2020). https://doi.org/10.1039/D0RA00483A

    Article  Google Scholar 

  49. Q.-F. Yi, W. Huang, W.-Q. Yu, L. Li, X.-P. Liu, Chin. J. Chem. (2008). https://doi.org/10.1002/cjoc.200890249

    Article  Google Scholar 

  50. N.A.M. Barakat, H.M. Moustafa, M.M. Nassar, M.A. Abdelkareem, M.S. Mahmoud, A.A. Almajid, K.A. Khalil, Electrochim. Acta (2015). https://doi.org/10.1016/j.electacta.2015.09.079

    Article  Google Scholar 

Download references

Acknowledgments

LR. Vidales-Gallardo thanks CONACYT for the scholarship granted to pursue a master’s degree. In addition, LR. Vidales-Gallardo is grateful for the help received from the professors of the Polytechnic University of Victoria, especially because the road so far has not been easy, but thanks to their contributions, support, and effort, this research has been concluded. Thanks to Dr. W.J. Pech-Rodríguez for his good teaching and advice.

Funding

There is no funding to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Pech-Rodríguez.

Ethics declarations

Conflict of interest

The author states that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidales-Gallardo, L.R., Armendáriz-Mireles, E.N., Suarez-Velázquez, G.G. et al. Green and cost-effective synthesis of NiSn alloys by using intermittent microwave heating process as electrocatalysts for ethanol oxidation in alkaline solution. Journal of Materials Research 36, 4207–4215 (2021). https://doi.org/10.1557/s43578-021-00271-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00271-w

Keywords

Navigation