Skip to main content
Log in

A combined experimental and computational analysis on how material interface mediates plastic flow in amorphous/crystalline composites

  • Article
  • Focus Issue: Multiscale Materials Modeling of Interface-mediated Thermomechanical Behavior
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, we study the deformation behavior in amorphous/crystalline metallic composites (A/C-MCs) through nanoindentation experiments and molecular dynamic (MD) simulations. The atomic deformation processes in both crystalline (C-) and amorphous (A-) phases near the amorphous-crystalline interface (ACI) are investigated and correlated with the material’s overall constitutive behavior at the microscale. Our major findings are (i) the ACIs enable a co-deformation of the A- and C-phases through “stiffening” the soft phases but “softening” the stiff phases in A/C-MCs through different micro-mechanisms; (ii) there exists an ACI-induced transition zone with a thickness of ~ 10 nm; (iii) the strong coupling between shear transformation zones (STZs) and dislocations can be quantified through carefully designed indentation experiments and simulations; and (iv) the nanoscale MD-simulation-predicted mechanisms can be mapped to the “pop-in” or “excursion” events on the force–indentation depth curves extracted from microscale experiments, although there is a length-scale gap in between.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M. Chen, Mechanical behavior of metallic glasses: microscopic understanding of strength and ductility. Annu. Rev. Mater. Res. 38, 445–469 (2008)

    Article  CAS  Google Scholar 

  2. J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye et al., Thin film metallic glasses: unique properties and potential applications. Thin Solid Films 520(16), 5097–5122 (2012)

    Article  CAS  Google Scholar 

  3. M. Chen, A brief overview of bulk metallic glasses. NPG Asia Mater. 3(9), 82–90 (2011)

    Article  Google Scholar 

  4. J. Schroers, The superplastic forming of bulk metallic glasses. JOM 57(5), 35–39 (2005)

    Article  CAS  Google Scholar 

  5. A. Donohue, F. Spaepen, R.G. Hoagland, A. Misra, Suppression of the shear band instability during plastic flow of nanometer-scale confined metallic glasses. Appl. Phys. Lett. 91(24), (2007)

    Article  CAS  Google Scholar 

  6. A. Antoniou, A. Bastawros, B. Biner, Experimental observations of deformation behavior of bulk metallic glasses during wedge-like cylindrical indentation. J. Mater. Res. 22, 514–524 (2007)

    Article  CAS  Google Scholar 

  7. M.J. Kramer, D.J. Sordelet, A.F. Bastawros, X. Tan, S.B. Biner, Absence of crystallization during cylindrical indentation of a Zr-based metallic glass. J. Non Cryst. Solids 351, 2159–2165 (2005)

    Article  CAS  Google Scholar 

  8. A. Antoniou, A.F. Bastawros, C.C.H. Lo, S.B. Biner, Deformation behavior of a zirconium based metallic glass during cylindrical indentation: in situ observations. Mater. Sci. Eng., A 394, 96–102 (2005)

    Article  CAS  Google Scholar 

  9. A. Antoniou, S.B. Biner, A.F. Bastawros, Experimental observation of cylindrical indentation of a metallic glass. Materials Research Society Symposium Proceedings, 903, 0903-Z12-0 (2005)

  10. A.A. Voevodin, J.S. Zabinski, Load-adaptive crystalline–amorphous nanocomposites. J. Mater. Sci. 33(2), 319–327 (1998)

    Article  CAS  Google Scholar 

  11. Y. Wang, J. Li, A.V. Hamza, T.W. Barbee, Ductile crystalline–amorphous nanolaminates. Proc. Natl. Acad. Sci. 104(27), 11155–11160 (2007)

    Article  CAS  Google Scholar 

  12. A. Khalajhedayati, Z. Pan, T.J. Rupert, Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility. Nat. Commun. 7(1), 1–8 (2016)

    Article  CAS  Google Scholar 

  13. D. Zhao, S. Wang, B. Zhu, L. Li, H. Zhao, Anisotropic deformation behaviors of amorphous-crystalline nanolaminates investigated via molecular dynamics simulations. J. Alloys Compd. 787, 649–657 (2019)

    Article  CAS  Google Scholar 

  14. T. Phan, J. Rigelesaiyin, Y. Chen, A. Bastawros, L. Xiong, Metallic glass instability induced by the continuous dislocation absorption at an amorphous/crystalline interface. Acta Mater. 189, 10–24 (2020)

    Article  CAS  Google Scholar 

  15. M.C. Liu, J.C. Huang, Y.T. Fong, S.P. Ju, X.H. Du, H.J. Pei, T.G. Nieh, Assessing the interfacial strength of an amorphous–crystalline interface. Acta Mater. 61(9), 3304–3313 (2013)

    Article  CAS  Google Scholar 

  16. L. Zhao, K.C. Chan, S.H. Chen, Atomistic deformation mechanisms of amorphous/polycrystalline metallic nanolaminates. Intermetallics 95, 102–109 (2018)

    Article  CAS  Google Scholar 

  17. S.D. Feng, L. Li, K.C. Chan, L. Qi, L. Zhao, L.M. Wang, R.P. Liu, Control of shear band dynamics in Cu50Zr50 metallic glass by introducing amorphous-crystalline interfaces. J. Alloy. Compd. 770, 896–905 (2019)

    Article  CAS  Google Scholar 

  18. W. Guo, E. Jägle, J. Yao, V. Maier, S. Korte-Kerzel, J.M. Schneider, D. Raabe, Intrinsic and extrinsic size effects in the deformation of amorphous CuZr/nanocrystalline Cu nanolaminates. Acta Mater. 80, 94–106 (2014)

    Article  CAS  Google Scholar 

  19. B. Arman, C. Brandl, S.N. Luo, T.C. Germann, A. Misra, T. Çağin, Plasticity in Cu (111)/Cu46Zr54 glass nanolaminates under uniaxial compression. J. Appl. Phys. 110(4), 043539 (2011)

    Article  CAS  Google Scholar 

  20. C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Mechanical behavior of amorphous alloys. Acta Mater. 55(12), 4067–4109 (2007)

    Article  CAS  Google Scholar 

  21. Y.Q. Wang, J.Y. Zhang, X.Q. Liang, K. Wu, G. Liu, J. Sun, Size-and constituent-dependent deformation mechanisms and strain rate sensitivity in nanolaminated crystalline Cu/amorphous Cu–Zr films. Acta Mater. 95, 132–144 (2015)

    Article  CAS  Google Scholar 

  22. J.Y. Zhang, G. Liu, S.Y. Lei, J.J. Niu, J. Sun, Transition from homogeneous-like to shear-band deformation in nanolayered crystalline Cu/amorphous Cu–Zr micropillars: intrinsic vs. extrinsic size effect. Acta Mater. 60(20), 7183–7196 (2012)

    Article  CAS  Google Scholar 

  23. J.Y. Zhang, Y.Q. Wang, X.Q. Liang, F.L. Zeng, G. Liu, J. Sun, Size-dependent He-irradiated tolerance and plastic deformation of crystalline/amorphous Cu/Cu–Zr nanolaminates. Acta Mater. 92, 140–151 (2015)

    Article  CAS  Google Scholar 

  24. J.Y. Zhang, Y. Liu, J. Chen, Y. Chen, G. Liu, X. Zhang, J. Sun, Mechanical properties of crystalline Cu/Zr and crystal–amorphous Cu/Cu–Zr multilayers. Mater. Sci. Eng., A 552, 392–398 (2012)

    Article  CAS  Google Scholar 

  25. W.R. Jian, L. Wang, X.H. Yao, S.N. Luo, Tensile and nanoindentation deformation of amorphous/crystalline nanolaminates: effects of layer thickness and interface type. Comput. Mater. Sci. 154, 225–233 (2018)

    Article  CAS  Google Scholar 

  26. W.J. Lee, Y.C. Lo, A. Yang, K. Chen, N.Y. Chen, Thickness effect of nanocrystalline layer on the deformation mechanism of amorphous/crystalline multilayered structure. CMES 120(2), 293–304 (2019)

    Article  Google Scholar 

  27. C. Brandl, T.C. Germann, A. Misra, Structure and shear deformation of metallic crystalline–amorphous interfaces. Acta Mater. 61(10), 3600–3611 (2013)

    Article  CAS  Google Scholar 

  28. H. Zhou, S. Qu, W. Yang, An atomistic investigation of structural evolution in metallic glass matrix composites. Int. J. Plast 44, 147–160 (2013)

    Article  CAS  Google Scholar 

  29. J.Y. Zhang, G. Liu, J. Sun, Crystallization-aided extraordinary plastic deformation in nanolayered crystalline Cu/amorphous Cu-Zr micropillars. Sci. Rep. 3(1), 1–6 (2013)

    Google Scholar 

  30. F. Abdeljaward, M. Haataja, Continuum modeling of bulk metallic glasses and composites. Phys. Rev. Lett. 105, (2010)

    Article  CAS  Google Scholar 

  31. G.P. Zheng, Application of phase-field modeling to deformation of metallic glasses. Curr. Opin. Solid State Mater. Sci. 15, 116–124 (2011)

    Article  CAS  Google Scholar 

  32. M.H. Lee, D.H. Bae, D.H. Kim, D.J. Sordelet, Synthesis of Ni-based bulk metallic glass matrix composites containing ductile brass phase by warm extrusion of gas atomized powders. J. Mater. Res. 18(9), 2101–2108 (2003)

    Article  CAS  Google Scholar 

  33. K. Durst, M. Göken, G.M. Pharr, Indentation size effect in spherical and pyramidal indentations. J. Phys. D Appl. Phys. 41(7), (2008)

    Article  CAS  Google Scholar 

  34. X.W. Zhou, R.A. Johnson, H.N.G. Wadley, Phys. Rev. B 69, 144113 (2004)

    Article  CAS  Google Scholar 

  35. M.I. Mendelev, M.J. Kramer, R.T. Ott, D.J. Sordelet, D. Yagodin, P. Popel, Development of suitable interatomic potentials for simulation of liquid and amorphous Cu–Zr alloys. Philos. Mag. 89(11), 967–987 (2009)

    Article  CAS  Google Scholar 

  36. M.I. Mendelev, D.J. Sordelet, M.J. Kramer, Using atomistic computer simulations to analyze x-ray diffraction data from metallic glasses. J. Appl. Phys. 102(4), 043501 (2007)

    Article  CAS  Google Scholar 

  37. M.I. Mendelev, M.J. Kramer, R.T. Ott, D.J. Sordelet, Molecular dynamics simulation of diffusion in supercooled Cu–Zr alloys. Philos. Mag. 89(2), 109–126 (2009)

    Article  CAS  Google Scholar 

  38. https://lammps.sandia.gov/

  39. https://www.ovito.org/

  40. C. Yang, C.T. Lo, A.F. Bastawros, B. Narasimhan, Measurements of diffusion thickness at polymer interfaces by nanoindentation: a numerically calibrated experimental approach. J. Mater. Res. 24(3), 985–992 (2009)

    Article  CAS  Google Scholar 

  41. D. Xu, B. Lohwongwatana, G. Duan, W.L. Johnson, C. Garland, Bulk metallic glass formation in binary Cu-rich alloy series–Cu100 − xZrx (x = 34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass. Acta Mater. 52(9), 2621–2624 (2004)

    Article  CAS  Google Scholar 

  42. Q. Guo, L. Zhang, A.S. Zeiger, Y. Li, K.J. Van Vliet, C.V. Thompson, Compositional dependence of Young’s moduli for amorphous Cu–Zr films measured using combinatorial deposition on microscale cantilever arrays. Scr. Mater. 64(1), 41–44 (2011)

    Article  CAS  Google Scholar 

  43. J.C. Lee, K.W. Park, K.H. Kim, E. Fleury, B.J. Lee, M. Wakeda, Y. Shibutani, Origin of the plasticity in bulk amorphous alloys. J. Mater. Res. 22(11), 3087–3097 (2007)

    Article  CAS  Google Scholar 

  44. M.I. Mendelev, R.T. Ott, M. Heggen, M. Feuerebacher, M.J. Kramer, D.J. Sordelet, Deformation behavior of an amorphous Cu 64.5 Zr 35.5 alloy: a combined computer simulation and experimental study. J. Appl. Phys. 104(12), 123532 (2008)

    Article  CAS  Google Scholar 

  45. C. Deng, C.A. Schuh, Atomistic mechanisms of cyclic hardening in metallic glass. Appl. Phys. Lett. 100(25), 251909 (2012)

    Article  CAS  Google Scholar 

  46. C. Qiu, P. Zhu, F. Fang, D. Yuan, X. Shen, Study of nanoindentation behavior of amorphous alloy using molecular dynamics. Appl. Surf. Sci. 305, 101–110 (2014)

    Article  CAS  Google Scholar 

  47. T. Tsuru, Y. Shibutani, Anisotropic effects in elastic and incipient plastic deformation under (001), (110), and (111) nanoindentation of Al and Cu. Phys. Rev. B 75(3), 035415 (2007)

    Article  CAS  Google Scholar 

  48. H. Liang, C.H. Woo, H. Huang, A.H.W. Ngan, T.X. Yu, Crystalline plasticity on copper (001), (110), and (111) surfaces during nanoindentation. Comput. Model. Eng. Sci. 6, 105–114 (2004)

    Google Scholar 

  49. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985)

    Book  Google Scholar 

  50. A. Gouldstone, H.J. Koh, K.Y. Zeng, A.E. Giannakopoulos, S. Suresh, Discrete and continuous deformation during nanoindentation of thin films. Acta Mater. 48(9), 2277–2295 (2000)

    Article  CAS  Google Scholar 

  51. D.F. Bahr, D.E. Wilson, D.A. Crowson, Energy considerations regarding yield points during indentation. J. Mater. Res. 14(6), 2269–2275 (1999)

    Article  CAS  Google Scholar 

  52. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992)

    Article  CAS  Google Scholar 

  53. J.G. Swadener, E.P. George, G.M. Pharr, The correlation of the indentation size effect measured with indenters of various shapes. J. Mech. Phys. Solids 50(4), 681–694 (2002)

    Article  Google Scholar 

  54. G.Z. Voyiadjis, M. Yaghoobi, Large scale atomistic simulation of size effects during nanoindentation: dislocation length and hardness. Mater. Sci. Eng., A 634, 20–31 (2015)

    Article  CAS  Google Scholar 

  55. G. I. Taylor, The mechanism of plastic deformation of crystals. Part I.—Theoretical. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 145(855), 362–387 (1934)

  56. W.D. Nix, H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411–425 (1998)

    Article  CAS  Google Scholar 

  57. D.H. Bae, M.H. Lee, D.H. Kim, D.J. Sordelet, Plasticity in Ni59Zr20Ti16Si2Sn3 metallic glass matrix composites containing brass fibers synthesized by warm extrusion of powders. Appl. Phys. Lett. 83(12), 2312–2314 (2003)

    Article  CAS  Google Scholar 

  58. H. Wang, A.F. Bastawros, S.B. Biner, Experimental observation of the failure mechanisms in a bulk metallic glass composite. Mater. Res. Soc. Symp. Proc. 1048, 501 (2007)

    Article  Google Scholar 

  59. L. Xiong, Y. Chen, Multiscale modeling and simulation of single-crystal MgO through an atomistic field theory. Int. J. Solids Struct. 46(6), 1448–1455 (2009)

    Article  CAS  Google Scholar 

  60. L. Xiong, A concurrent atomistic-continuum methodology and its applications, PhD Dissertation, Gainesville: University of Florida, (2011)

  61. L. Xiong, Q. Deng, G. Tucker, D.L. McDowell, Y. Chen, A concurrent scheme for passing dislocations from atomistic to continuum domains. Acta Mater. 60(3), 899–913 (2012)

    Article  CAS  Google Scholar 

  62. S. Xu, L. Xiong, Y. Chen, D.L. McDowell, Sequential slip transfer of mixed-character dislocations across Ʃ3 coherent twin boundary in fcc metals: a concurrent atomistic-continuum study. NPJ Comput. Mater. 2(1), 1–9 (2016)

    Article  CAS  Google Scholar 

  63. S. Xu, L. Xiong, Q. Deng, D.L. McDowell, Mesh refinement scheme for the concurrent atomistic-continuum method. Int. J. Solids Struct. 90, 144–152 (2016)

    Article  CAS  Google Scholar 

  64. S. Xu, L. Xiong, Y. Chen, D.L. McDowell, Validation of the concurrent atomistic-continuum method on screw dislocation/stacking fault interactions. Crystals 7(5), 120 (2017)

    Article  CAS  Google Scholar 

  65. X. Chen, W. Li, L. Xiong, Y. Li, S. Yang, Z. Zheng, D.L. McDowell, Y. Chen, Ballistic-diffusive phonon heat transport across grain boundaries. Acta Mater. 136, 355–365 (2017)

    Article  CAS  Google Scholar 

  66. X. Chen, L. Xiong, D.L. McDowell, Y. Chen, Effects of phonons on mobility of dislocations and dislocation arrays. Scr. Mater. 137, 22–26 (2017)

    Article  CAS  Google Scholar 

  67. X. Chen, A. Diaz, L. Xiong, D.L. McDowell, Y. Chen, Passing waves from atomistic to continuum. J. Comput. Phys. 354, 393–402 (2018)

    Article  CAS  Google Scholar 

  68. S. Xu, T.G. Payne, H. Chen, Y. Liu, L. Xiong, Y. Chen, D.L. McDowell, PyCAC: the concurrent atomistic-continuum simulation environment. J. Mater. Res. 33(7), 857 (2018)

    Article  CAS  Google Scholar 

  69. H. Chen, S. Xu, W. Li, R. Ji, T. Phan, L. Xiong, A spatial decomposition parallel algorithm for a concurrent atomistic-continuum simulation and its preliminary applications. Comput. Mater. Sci. 144, 1–10 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the US National Science Foundation (NSF) with an award number of DMR-1807545 and the Extreme Science and Engineering Discovery Environment (XSEDE-TG-MSS170003 and XSEDE-TG-MSS190008). TP and LX also acknowledge the support of NSF under an award number of CMMI-1930093.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liming Xiong or Ashraf Bastawros.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Liming Xiong was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelmawla, A., Phan, T., Xiong, L. et al. A combined experimental and computational analysis on how material interface mediates plastic flow in amorphous/crystalline composites. Journal of Materials Research 36, 2816–2829 (2021). https://doi.org/10.1557/s43578-021-00269-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00269-4

Keywords

Navigation