Skip to main content
Log in

Effect of deep cryogenic cycling treatment on shear transformation zone volume and size of Zr-based metallic glass

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The study on the structure and mechanical properties of Zr55Al10Ni5Cu29Y1 bulk metallic glasses (BMGs) indicates that deep cryogenic cycling treatment (DCT) is an effective method to improve room-temperature plasticity of BMGs containing trace rare earth elements. DCT not only increases the volume and size of STZs in BMGs, promotes the generation of multiple shear bands, but also reduces the maximum shear stress that occurs in pop-in events. Due to the internal stress generated during DCT, rejuvenation causes the larger volume and size of the shear deformation zone, which can promote the shear bands formation and generate multiple shear bands to accommodate plastic deformation. In different BMGs systems, the volume of STZs tends to decrease as v increases. STZ is more sensitive to the composition, and changes in trace elements can cause changes of the volume of STZs.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48(1), 279 (2000)

    Article  CAS  Google Scholar 

  2. C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Mechanical behavior of amorphous alloys. Acta Mater. 55(12), 4067 (2007)

    Article  CAS  Google Scholar 

  3. W.H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater. Sci. 57(3), 487 (2012)

    Article  CAS  Google Scholar 

  4. J.W. Qiao, H.L. Jia, P.K. Liaw, Metallic glass matrix composites. Mater. Sci. Eng. R 100, 1 (2016)

    Article  Google Scholar 

  5. J.W. Qiao, In-situ dendrite/metallic glass matrix composites: a review. J. Mater. Sci. Technol. 29(8), 685 (2013)

    Article  CAS  Google Scholar 

  6. Z.F. Zhang, J. Eckert, L. Schultz, Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51(4), 1167 (2003)

    Article  CAS  Google Scholar 

  7. W.H. Wang, C. Dong, C.H. Shek, Bulk metallic glasses. Mater. Sci. Eng. R Rep. 44(2–3), 45 (2004)

    Google Scholar 

  8. A. Concustell, F.O. Méar, S. Suriñach, M.D. Baró, A.L. Greer, Structural relaxation and rejuvenation in a metallic glass induced by shot-peening. Philos. Mag. Lett. 89(12), 831 (2009)

    Article  CAS  Google Scholar 

  9. P. Xue, S. Pauly, W. Gan, S. Jiang, H. Fan, Z. Ning, Y. Huang, J. Sun, Enhanced tensile plasticity of a CuZr-based bulk metallic glass composite induced by ion irradiation. J. Mater. Sci. Technol. 35(10), 2221 (2019)

    Article  Google Scholar 

  10. R.T. Qu, J.X. Zhao, M. Stoica, J. Eckert, Z.F. Zhang, Macroscopic tensile plasticity of bulk metallic glass through designed artificial defects. Mater. Sci. Eng. A 534, 365 (2012)

    Article  CAS  Google Scholar 

  11. S.V. Ketov, Y.H. Sun, S. Nachum, Z. Lu, A. Checchi, A.R. Beraldin, H.Y. Bai, W.H. Wang, D.V. Louzguine-Luzgin, M.A. Carpenter, A.L. Greer, Rejuvenation of metallic glasses by non-affine thermal strain. Nature 524(7564), 200 (2015)

    Article  CAS  Google Scholar 

  12. W. Guo, R. Yamada, J. Saida, Rejuvenation and plasticization of metallic glass by deep cryogenic cycling treatment. Intermetallics 93, 141 (2018)

    Article  CAS  Google Scholar 

  13. W. Song, X. Meng, Y. Wu, D. Cao, H. Wang, X. Liu, X. Wang, Z. Lu, Improving plasticity of the Zr46Cu46Al8 bulk metallic glass via thermal rejuvenation. Sci. Bull. 63(13), 840 (2018)

    Article  CAS  Google Scholar 

  14. Y. Zhang, M.X. Pan, D.Q. Zhao, R.J. Wang, W.H. Wang, Formation of Zr-based bulk metallic glass from low purity of materials by yttrium addition. Mater. Trans. JIM 41(11), 1410–1414 (2000)

    Article  CAS  Google Scholar 

  15. J. Zhu, C. Wang, J. Han, S. Yang, G. Xie, H. Jiang, Y. Chen, X. Liu, Formation of Zr-based bulk metallic glass with large amount of yttrium addition. Intermetallics 92, 55 (2018)

    Article  CAS  Google Scholar 

  16. W. Wang, Roles of minor additions in formation and properties of bulk metallic glasses. Prog. Mater. Sci. 52(4), 540 (2007)

    Article  CAS  Google Scholar 

  17. C.Y. Luo, Y.H. Zhao, X.K. Xi, G. Wang, D.Q. Zhao, M.X. Pan, W.H. Wang, S.Z. Kou, Making amorphous steel in air by rare earth microalloying. J. Non-Cryst. Solids 352(2), 185 (2006)

    Article  CAS  Google Scholar 

  18. J. Chen, Y. Zhang, J. He, K. Yao, B. Wei, G. Chen, Metallographic analysis of Cu–Zr–Al bulk amorphous alloys with yttrium addition. Scr. Mater. 4(7), 1351 (2006)

    Article  Google Scholar 

  19. M. Malekan, R. Rashidi, S.G. Shabestari, Mechanical properties and crystallization kinetics of Er-containing Cu–Zr–Al bulk metallic glasses with excellent glass forming ability. Vacuum 174, 109223 (2020)

    Article  CAS  Google Scholar 

  20. A. Slipenyuk, J. Eckert, Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass. Scr. Mater. 50(1), 39 (2004)

    Article  CAS  Google Scholar 

  21. Y.H. Liu, C.T. Liu, W.H. Wang, A. Inoue, T. Sakurai, M.W. Chen, Thermodynamic origins of shear band formation and the universal scaling law of metallic glass strength. Phys. Rev. Lett. 103(6), 65504 (2009)

    Article  CAS  Google Scholar 

  22. J. Wu, Z. Zhou, Z. Peng, Serrated behaviors and plasticity of Nb-alloyed Cu-based bulk metallic glasses. Met. Mater. Int. 26(10), 1483 (2019)

    Article  Google Scholar 

  23. J. Brechtl, X. Xie, Z. Wang, J. Qiao, P.K. Liaw, Complexity analysis of serrated flow in a bulk metallic glass under constrained and unconstrained conditions. Mater. Sci. Eng. A 771, 138585 (2020)

    Article  CAS  Google Scholar 

  24. X. Xie, Y.-C. Lo, Y. Tong, J. Qiao, G. Wang, S. Ogata, H. Qi, K.A. Dahmen, Y. Gao, P.K. Liaw, Origin of serrated flow in bulk metallic glasses. J. Mech. Phys. Solids 124, 634 (2019)

    Article  Google Scholar 

  25. Y. Tong, T. Iwashita, W. Dmowski, H. Bei, Y. Yokoyama, T. Egami, Structural rejuvenation in bulk metallic glasses. Acta Mater. 86, 240 (2015)

    Article  CAS  Google Scholar 

  26. P. Gong, G. Yin, Z. Jamili-Shirvan, H. Ding, X. Wang, J. Jin, Influence of deep cryogenic cycling on the rejuvenation and plasticization of TiZrHfBeCu high-entropy bulk metallic glass. Mater. Sci. Eng. A 797, 140078 (2020)

    Article  CAS  Google Scholar 

  27. W. Wright, R. Saha, W.D. Nix, Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater. Trans. 42(4), 642–649 (2001)

    Article  CAS  Google Scholar 

  28. N. Li, L. Liu, Q. Chen, J. Pan, K.C. Chan, The effect of free volume on the deformation behaviour of a Zr-based metallic glass under nanoindentation. J. Phys. D Appl. Phys. 40(19), 6055 (2007)

    Article  CAS  Google Scholar 

  29. D. Pan, A. Inoue, T. Sakurai, M.W. Chen, Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses. Proc. Natl Acad. Sci. U.S.A. 105(39), 14769 (2008)

    Article  CAS  Google Scholar 

  30. W.L. Johnson, K. Samwer, A universal criterion for plastic yielding of metallic glasses with a (T/Tg) 2/3 temperature dependence. Phys. Rev. Lett. 95(19), 195501 (2005)

    Article  CAS  Google Scholar 

  31. O.N. Senkov, D.B. Miracle, Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater. Res. Bull. 36(12), 2183 (2001)

    Article  CAS  Google Scholar 

  32. W. Guo, Y. Shao, M. Zhao, S. Lü, S. Wu, Varying the treating conditions to rejuvenate metallic glass by deep cryogenic cycling treatment. J. Alloys Compd. 819, 152997 (2020)

    Article  CAS  Google Scholar 

  33. W.F. Wu, Y. Li, C.A. Schuh, Strength, plasticity and brittleness of bulk metallic glasses under compression: statistical and geometric effects. Philos. Mag. 88(1), 71 (2008)

    Article  CAS  Google Scholar 

  34. D. Pan, Y. Yokoyama, T. Fujita, Y.H. Liu, S. Kohara, A. Inoue, M.W. Chen, Correlation between structural relaxation and shear transformation zone volume of a bulk metallic glass. Appl Phys. Lett. 95(14), 141909 (2009)

    Article  Google Scholar 

  35. Y. Ma, G.J. Peng, T.T. Debela, T.H. Zhang, Nanoindentation study on the characteristic of shear transformation zone volume in metallic glassy films. Scr. Mater. 108, 52 (2015)

    Article  CAS  Google Scholar 

  36. S.T. Liu, Z. Wang, H.L. Peng, H.B. Yu, W.H. Wang, The activation energy and volume of flow units of metallic glasses. Scr. Mater. 67(1), 9 (2012)

    Article  CAS  Google Scholar 

  37. F. Jiang, M.Q. Jiang, H.F. Wang, Y.L. Zhao, L. He, J. Sun, Shear transformation zone volume determining ductile–brittle transition of bulk metallic glasses. Acta Mater. 59(5), 2057 (2011)

    Article  CAS  Google Scholar 

  38. J.J. Pang, M.J. Tan, K.M. Liew, On valence electron density, energy dissipation and plasticity of bulk metallic glasses. J. Alloys Compd. 577, S56 (2013)

    Article  CAS  Google Scholar 

  39. Z.Q. Chen, L. Huang, P. Huang, K.W. Xu, F. Wang, T.J. Lu, Clarification on shear transformation zone size and its correlation with plasticity for Zr-based bulk metallic glass in different structural states. Mater. Sci. Eng. A 677, 349 (2016)

    Article  CAS  Google Scholar 

  40. I.-C. Choi, Y. Zhao, B.-G. Yoo, Y.-J. Kim, J.-Y. Suh, U. Ramamurty, J.-I. Jang, Estimation of the shear transformation zone size in a bulk metallic glass through statistical analysis of the first pop-in stresses during spherical nanoindentation. Scr. Mater. 66(11), 923 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of National Natural Science Foundation of China (No. 52071229), the financial support of the Natural Science Foundation of Shanxi Province, China (Nos. 201901D111105 and 201901D111114), and the State Key Lab of Advanced Metals and Materials of China (No. 2020-Z09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwei Qiao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest with regard to the submitted manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Zhang, M., Jin, X. et al. Effect of deep cryogenic cycling treatment on shear transformation zone volume and size of Zr-based metallic glass. Journal of Materials Research 36, 2047–2055 (2021). https://doi.org/10.1557/s43578-021-00264-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00264-9

Keywords

Navigation