Abstract
The study on the structure and mechanical properties of Zr55Al10Ni5Cu29Y1 bulk metallic glasses (BMGs) indicates that deep cryogenic cycling treatment (DCT) is an effective method to improve room-temperature plasticity of BMGs containing trace rare earth elements. DCT not only increases the volume and size of STZs in BMGs, promotes the generation of multiple shear bands, but also reduces the maximum shear stress that occurs in pop-in events. Due to the internal stress generated during DCT, rejuvenation causes the larger volume and size of the shear deformation zone, which can promote the shear bands formation and generate multiple shear bands to accommodate plastic deformation. In different BMGs systems, the volume of STZs tends to decrease as v increases. STZ is more sensitive to the composition, and changes in trace elements can cause changes of the volume of STZs.
Graphic abstract
Similar content being viewed by others
Data availability
All data included in this study are available upon request by contact with the corresponding author.
References
A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48(1), 279 (2000)
C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Mechanical behavior of amorphous alloys. Acta Mater. 55(12), 4067 (2007)
W.H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater. Sci. 57(3), 487 (2012)
J.W. Qiao, H.L. Jia, P.K. Liaw, Metallic glass matrix composites. Mater. Sci. Eng. R 100, 1 (2016)
J.W. Qiao, In-situ dendrite/metallic glass matrix composites: a review. J. Mater. Sci. Technol. 29(8), 685 (2013)
Z.F. Zhang, J. Eckert, L. Schultz, Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Mater. 51(4), 1167 (2003)
W.H. Wang, C. Dong, C.H. Shek, Bulk metallic glasses. Mater. Sci. Eng. R Rep. 44(2–3), 45 (2004)
A. Concustell, F.O. Méar, S. Suriñach, M.D. Baró, A.L. Greer, Structural relaxation and rejuvenation in a metallic glass induced by shot-peening. Philos. Mag. Lett. 89(12), 831 (2009)
P. Xue, S. Pauly, W. Gan, S. Jiang, H. Fan, Z. Ning, Y. Huang, J. Sun, Enhanced tensile plasticity of a CuZr-based bulk metallic glass composite induced by ion irradiation. J. Mater. Sci. Technol. 35(10), 2221 (2019)
R.T. Qu, J.X. Zhao, M. Stoica, J. Eckert, Z.F. Zhang, Macroscopic tensile plasticity of bulk metallic glass through designed artificial defects. Mater. Sci. Eng. A 534, 365 (2012)
S.V. Ketov, Y.H. Sun, S. Nachum, Z. Lu, A. Checchi, A.R. Beraldin, H.Y. Bai, W.H. Wang, D.V. Louzguine-Luzgin, M.A. Carpenter, A.L. Greer, Rejuvenation of metallic glasses by non-affine thermal strain. Nature 524(7564), 200 (2015)
W. Guo, R. Yamada, J. Saida, Rejuvenation and plasticization of metallic glass by deep cryogenic cycling treatment. Intermetallics 93, 141 (2018)
W. Song, X. Meng, Y. Wu, D. Cao, H. Wang, X. Liu, X. Wang, Z. Lu, Improving plasticity of the Zr46Cu46Al8 bulk metallic glass via thermal rejuvenation. Sci. Bull. 63(13), 840 (2018)
Y. Zhang, M.X. Pan, D.Q. Zhao, R.J. Wang, W.H. Wang, Formation of Zr-based bulk metallic glass from low purity of materials by yttrium addition. Mater. Trans. JIM 41(11), 1410–1414 (2000)
J. Zhu, C. Wang, J. Han, S. Yang, G. Xie, H. Jiang, Y. Chen, X. Liu, Formation of Zr-based bulk metallic glass with large amount of yttrium addition. Intermetallics 92, 55 (2018)
W. Wang, Roles of minor additions in formation and properties of bulk metallic glasses. Prog. Mater. Sci. 52(4), 540 (2007)
C.Y. Luo, Y.H. Zhao, X.K. Xi, G. Wang, D.Q. Zhao, M.X. Pan, W.H. Wang, S.Z. Kou, Making amorphous steel in air by rare earth microalloying. J. Non-Cryst. Solids 352(2), 185 (2006)
J. Chen, Y. Zhang, J. He, K. Yao, B. Wei, G. Chen, Metallographic analysis of Cu–Zr–Al bulk amorphous alloys with yttrium addition. Scr. Mater. 4(7), 1351 (2006)
M. Malekan, R. Rashidi, S.G. Shabestari, Mechanical properties and crystallization kinetics of Er-containing Cu–Zr–Al bulk metallic glasses with excellent glass forming ability. Vacuum 174, 109223 (2020)
A. Slipenyuk, J. Eckert, Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass. Scr. Mater. 50(1), 39 (2004)
Y.H. Liu, C.T. Liu, W.H. Wang, A. Inoue, T. Sakurai, M.W. Chen, Thermodynamic origins of shear band formation and the universal scaling law of metallic glass strength. Phys. Rev. Lett. 103(6), 65504 (2009)
J. Wu, Z. Zhou, Z. Peng, Serrated behaviors and plasticity of Nb-alloyed Cu-based bulk metallic glasses. Met. Mater. Int. 26(10), 1483 (2019)
J. Brechtl, X. Xie, Z. Wang, J. Qiao, P.K. Liaw, Complexity analysis of serrated flow in a bulk metallic glass under constrained and unconstrained conditions. Mater. Sci. Eng. A 771, 138585 (2020)
X. Xie, Y.-C. Lo, Y. Tong, J. Qiao, G. Wang, S. Ogata, H. Qi, K.A. Dahmen, Y. Gao, P.K. Liaw, Origin of serrated flow in bulk metallic glasses. J. Mech. Phys. Solids 124, 634 (2019)
Y. Tong, T. Iwashita, W. Dmowski, H. Bei, Y. Yokoyama, T. Egami, Structural rejuvenation in bulk metallic glasses. Acta Mater. 86, 240 (2015)
P. Gong, G. Yin, Z. Jamili-Shirvan, H. Ding, X. Wang, J. Jin, Influence of deep cryogenic cycling on the rejuvenation and plasticization of TiZrHfBeCu high-entropy bulk metallic glass. Mater. Sci. Eng. A 797, 140078 (2020)
W. Wright, R. Saha, W.D. Nix, Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater. Trans. 42(4), 642–649 (2001)
N. Li, L. Liu, Q. Chen, J. Pan, K.C. Chan, The effect of free volume on the deformation behaviour of a Zr-based metallic glass under nanoindentation. J. Phys. D Appl. Phys. 40(19), 6055 (2007)
D. Pan, A. Inoue, T. Sakurai, M.W. Chen, Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses. Proc. Natl Acad. Sci. U.S.A. 105(39), 14769 (2008)
W.L. Johnson, K. Samwer, A universal criterion for plastic yielding of metallic glasses with a (T/Tg) 2/3 temperature dependence. Phys. Rev. Lett. 95(19), 195501 (2005)
O.N. Senkov, D.B. Miracle, Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater. Res. Bull. 36(12), 2183 (2001)
W. Guo, Y. Shao, M. Zhao, S. Lü, S. Wu, Varying the treating conditions to rejuvenate metallic glass by deep cryogenic cycling treatment. J. Alloys Compd. 819, 152997 (2020)
W.F. Wu, Y. Li, C.A. Schuh, Strength, plasticity and brittleness of bulk metallic glasses under compression: statistical and geometric effects. Philos. Mag. 88(1), 71 (2008)
D. Pan, Y. Yokoyama, T. Fujita, Y.H. Liu, S. Kohara, A. Inoue, M.W. Chen, Correlation between structural relaxation and shear transformation zone volume of a bulk metallic glass. Appl Phys. Lett. 95(14), 141909 (2009)
Y. Ma, G.J. Peng, T.T. Debela, T.H. Zhang, Nanoindentation study on the characteristic of shear transformation zone volume in metallic glassy films. Scr. Mater. 108, 52 (2015)
S.T. Liu, Z. Wang, H.L. Peng, H.B. Yu, W.H. Wang, The activation energy and volume of flow units of metallic glasses. Scr. Mater. 67(1), 9 (2012)
F. Jiang, M.Q. Jiang, H.F. Wang, Y.L. Zhao, L. He, J. Sun, Shear transformation zone volume determining ductile–brittle transition of bulk metallic glasses. Acta Mater. 59(5), 2057 (2011)
J.J. Pang, M.J. Tan, K.M. Liew, On valence electron density, energy dissipation and plasticity of bulk metallic glasses. J. Alloys Compd. 577, S56 (2013)
Z.Q. Chen, L. Huang, P. Huang, K.W. Xu, F. Wang, T.J. Lu, Clarification on shear transformation zone size and its correlation with plasticity for Zr-based bulk metallic glass in different structural states. Mater. Sci. Eng. A 677, 349 (2016)
I.-C. Choi, Y. Zhao, B.-G. Yoo, Y.-J. Kim, J.-Y. Suh, U. Ramamurty, J.-I. Jang, Estimation of the shear transformation zone size in a bulk metallic glass through statistical analysis of the first pop-in stresses during spherical nanoindentation. Scr. Mater. 66(11), 923 (2012)
Acknowledgments
The authors would like to acknowledge the financial support of National Natural Science Foundation of China (No. 52071229), the financial support of the Natural Science Foundation of Shanxi Province, China (Nos. 201901D111105 and 201901D111114), and the State Key Lab of Advanced Metals and Materials of China (No. 2020-Z09).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest with regard to the submitted manuscript.
Rights and permissions
About this article
Cite this article
Zhu, Q., Zhang, M., Jin, X. et al. Effect of deep cryogenic cycling treatment on shear transformation zone volume and size of Zr-based metallic glass. Journal of Materials Research 36, 2047–2055 (2021). https://doi.org/10.1557/s43578-021-00264-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43578-021-00264-9