Skip to main content
Log in

A novel solar radiation absorption enhancement of TiO2 nanomaterial by a simple hydrogenation method

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Black titanium dioxide is produced by straightforward hydrogenation of its Anatase white counterpart at a relatively low temperature of 325 °C. X-ray measurements show that the average crystallite size is reduced by 37% due to the hydrogenation process. This decline in crystallite size is further confirmed by the Raman spectra of the inspected samples. Instead, the micrographs of the transmission electron microscope indicate that the average particle size of the black and white titanium dioxide is about 126 ± 45 nm and 109 ± 32 nm, respectively. Moreover, the optical bandgap drops as a result of the hydrogenation, which is explained by the presence of the localized states of Ti3+ ions and/or oxygen vacancies in hydrogenated TiO2 as verified by the X-ray photoelectron spectroscopy (XPS) measurements. The black oxide shows significant photothermal properties and a considerable maximum attainable temperature under a continuous solar illumination. Most importantly, the hydrogenated oxide enhances the solar radiation absorption considerably near the optimum solar intensity.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A. Hepbasli, A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renew. Sustain. Energy Rev. 12, 593 (2008)

    Article  Google Scholar 

  2. L. Wei, Y. Lu, Z. Fang, R. Zhang, D. Ma, C. Lu, Z. Xu, S. Tao, Novel solar absorptive and infrared reflective properties of Cu-doped Sm0.5Sr0.5CoO3−δ. J. Mater. Sci. 27, 11777 (2016)

    CAS  Google Scholar 

  3. L.A. Al-Hajji, A.A. Ismail, M. Alsaidi, S.A. Ahmed, F. Almutawa, A. Bumajdad, Comparison of TiO2 nanowires and TiO2 nanoparticles for photodegradation of resorcinol as endocrine model. J. Nanoparticle Res. (2020). https://doi.org/10.1007/s11051-020-4757-1

    Article  Google Scholar 

  4. H. Jing, Q. Cheng, J.M. Weller, X.S. Chu, Q.H. Wang, C.K. Chan, Synthesis of TiO2 nanosheet photocatalysts from exfoliation of TiS2 and hydrothermal treatment. J. Mater. Res. 33, 3540 (2018)

    Article  CAS  Google Scholar 

  5. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972)

    Article  CAS  Google Scholar 

  6. F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, P. Feng, Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J. Am. Chem. Soc. 132, 11856 (2010)

    Article  CAS  Google Scholar 

  7. T. Xia, C. Zhang, N.A. Oyler, X. Chen, Enhancing microwave absorption of TiO2 nanocrystals via hydrogenation. J. Mater. Res. 29, 2198 (2014)

    Article  CAS  Google Scholar 

  8. S.-Y. Lee, S.-J. Park, TiO2 photocatalyst for water treatment applications. J. Ind. Eng. Chem. 19, 1761 (2013)

    Article  CAS  Google Scholar 

  9. S. Cassaignon, C. Colbeau-Justin, O. Durupthy, Titanium dioxide in photocatalysis, in Nanomaterials: A Danger or a Promise?. ed. by R. Brayner, F. Fiévet, T. Coradin (Springer, London, 2013), p. 153

    Chapter  Google Scholar 

  10. H.-X. Guo, K.-L. Lin, Z.-S. Zheng, F.-B. Xiao, S.-X. Li, Sulfanilic acid-modified P25 TiO2 nanoparticles with improved photocatalytic degradation on Congo red under visible light. Dyes Pigm. 92, 1278 (2012)

    Article  CAS  Google Scholar 

  11. X. Chen, C. Burda, The electronic origin of the visible-light absorption properties of C-, N-and S-doped TiO2 nanomaterials. J. Am. Chem. Soc. 130, 5018 (2008)

    Article  CAS  Google Scholar 

  12. X. Pan, M.Q. Yang, X. Fu, N. Zhang, Y.J. Xu, Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 5, 3601 (2013)

    Article  CAS  Google Scholar 

  13. X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746 (2011)

    Article  CAS  Google Scholar 

  14. J. Tian, Y. Leng, H. Cui, H. Liu, Hydrogenated TiO2 nanobelts as highly efficient photocatalytic organic dye degradation and hydrogen evolution photocatalyst. J. Hazard. Mater. 299, 165 (2015)

    Article  CAS  Google Scholar 

  15. M. Tian, C. Liu, J. Ge, D. Geohegan, G. Duscher, G. Eres, Recent progress in characterization of the core–shell structure of black titania. J. Mater. Res. 34, 1138 (2019)

    Article  CAS  Google Scholar 

  16. G. Zhu, T. Lin, X. Lü, W. Zhao, C. Yang, Z. Wang, H. Yin, Z. Liu, F. Huang, J. Lin, Black brookite titania with high solar absorption and excellent photocatalytic performance. J. Mater. Chem. A 1, 9650 (2013)

    Article  CAS  Google Scholar 

  17. J. Xu, X. Qi, C. Luo, J. Qiao, R. Xie, Y. Sun, W. Zhong, Q. Fu, C. Pan, Synthesis and enhanced microwave absorption properties: a strongly hydrogenated TiO2 nanomaterial. Nanotechnology 28, 425701 (2017)

    Article  CAS  Google Scholar 

  18. W. Hu, L. Li, G. Li, C. Tang, L. Sun, High-quality brookite TiO2 flowers: synthesis, characterization, and dielectric performance. Cryst. Growth Des. 9, 3676 (2009)

    Article  CAS  Google Scholar 

  19. X. Liu, B. Hou, G. Wang, Z. Cui, X. Zhu, X. Wang, Black titania/graphene oxide nanocomposite films with excellent photothermal property for solar steam generation. J. Mater. Res. 33, 674 (2018)

    Article  CAS  Google Scholar 

  20. C.S. Campos, E.R. Spada, F.R. Paula, F.T. Reis, R.M. Faria, M.L. Sartorelli, Raman and XRD study on brookite-anatase coexistence in cathodic electrosynthesized titania. J. Raman Spectrosc. 43, 433 (2012)

    Article  CAS  Google Scholar 

  21. Y. Hu, H.-L. Tsai, C.-L. Huang, Effect of brookite phase on the anatase–rutile transition in titania nanoparticles. J. Eur. Ceram. Soc. 23, 691 (2003)

    Article  CAS  Google Scholar 

  22. xxx Madhvi, L. Singh, S. Saroj, Y. Lee, S.V. Singh, Facile synthesis of nano-crystalline anatase TiO2 and their applications in degradation of Direct blue 199. J. Mater. Sci. 27, 2581 (2015)

    Google Scholar 

  23. X.M. Wang, P. Xiao, Morphology tuning in nontemplated solvothermal synthesis of titania nanoparticles. J. Mater. Res. 21, 1189 (2006)

    Article  CAS  Google Scholar 

  24. J.-G. Li, T. Ishigaki, X. Sun, Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: phase-selective synthesis and physicochemical properties. J. Phys. Chem. C. 111, 4969 (2007)

    Article  CAS  Google Scholar 

  25. A.O. Juma, I.O. Acik, V. Mikli, A. Mere, M. Krunks, Effect of solution composition on anatase to rutile transformation of sprayed TiO2 thin films. Thin Solid Films 594, 287 (2015)

    Article  CAS  Google Scholar 

  26. X.X.X. Anita, A.K. Yadav, N. Khatun, S. Kumar, C.-M. Tseng, S. Biring, S. Sen, Size and strain dependent anatase to rutile phase transition in TiO2 due to Si incorporation. J. Mater. Sci. 28, 19017 (2017)

    CAS  Google Scholar 

  27. X. Wang, R. Fu, Q. Yin, H. Wu, X. Guo, R. Xu, Q. Zhong, Black TiO2 synthesized via magnesiothermic reduction for enhanced photocatalytic activity. J. Nanoparticle Res. (2018). https://doi.org/10.1007/s11051-018-4188-4

    Article  Google Scholar 

  28. Z. Zheng, B. Huang, J. Lu, Z. Wang, X. Qin, X. Zhang, Y. Dai, M.H. Whangbo, Hydrogenated titania: synergy of surface modification and morphology improvement for enhanced photocatalytic activity. Chem. Commun. 48, 5733 (2012)

    Article  CAS  Google Scholar 

  29. L. Zhang, Y. Jiang, X. Li, S. Wang, Y. Xiao, Preparation of titanium dioxide nanoparticles modified with methacrylate and their electrophoretic properties. J. Mater. Sci. 26, 5263 (2015)

    CAS  Google Scholar 

  30. A. Mohamed, T.A. Osman, M.S. Toprak, M. Muhammed, A. Uheida, Surface functionalized composite nanofibers for efficient removal of arsenic from aqueous solutions. Chemosphere 180, 108 (2017)

    Article  CAS  Google Scholar 

  31. I.A. Mkhalid, J.L.G. Fierro, R.M. Mohamed, A.A. Alshahri, Impact of the PtO loading on mesoporous TiO2 nanoparticles for enhanced photodegradation of Imazapyr herbicide under simulated solar light. J. Nanoparticle Res. (2020). https://doi.org/10.1007/s11051-020-05072-6

    Article  Google Scholar 

  32. C. Drouet, P. Alphonse, A. Rousset, IR spectroscopic study of NO and CO adsorptions on nonstoichiometric nickel–copper manganites. Phys. Chem. Chem. Phys. 3, 3826 (2001)

    Article  CAS  Google Scholar 

  33. A. Sinhamahapatra, J.-P. Jeon, J.-S. Yu, A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy Environ. Sci. 8, 3539 (2015)

    Article  CAS  Google Scholar 

  34. X. Wang, Y. Li, X. Liu, S. Gao, B. Huang, Y. Dai, Preparation of Ti3+ self-doped TiO2 nanoparticles and their visible light photocatalytic activity. Chin. J. Catal. 36, 389 (2015)

    Article  CAS  Google Scholar 

  35. Y. Su, J. Cao, L. Li, G. Zhang, P. Zheng, TiO2 hollow spheres with surface-rich Ti3+ under Pd-catalyzed hydrogenation for improved visible-light photocatalysis. J. Nanoparticle Res. (2019). https://doi.org/10.1007/s11051-019-4470-0

    Article  Google Scholar 

  36. D. Ariyanti, L. Mills, J. Dong, Y. Yao, W. Gao, NaBH4 modified TiO2: defect site enhancement related to its photocatalytic activity. Mater. Chem. Phys. 199, 571 (2017)

    Article  CAS  Google Scholar 

  37. B.S. Shirke, P.V. Korake, P.P. Hankare, S.R. Bamane, K.M. Garadkar, Synthesis and characterization of pure anatase TiO2 nanoparticles. J. Mater. Sci. 22, 821 (2010)

    Google Scholar 

  38. B.D. Viezbicke, S. Patel, B.E. Davis, D.P. Birnie, Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solidi (b) 252, 1700 (2015)

    Article  CAS  Google Scholar 

  39. N. Singh, V. Murugadoss, J. Rajavedhanayagam, S. Angaiah, A wide solar spectrum light harvesting Ag2Se quantum dot-sensitized porous TiO2 nanofibers as photoanode for high-performance QDSC. J. Nanoparticle Res. (2019). https://doi.org/10.1007/s11051-019-4619-x

    Article  Google Scholar 

  40. H. Peng, J. Li, S.-S. Li, J.-B. Xia, First-principles study of the electronic structures and magnetic properties of 3d transition metal-doped anatase TiO2. J. Phys. 20, 125207 (2008)

    Google Scholar 

  41. R. Asahi, Y. Taga, W. Mannstadt, A.J. Freeman, Electronic and optical properties of anatase TiO2. Phys. Rev. B 61, 7459 (2000)

    Article  CAS  Google Scholar 

  42. A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C.L. Bianchi, R. Psaro, V. Dal Santo, Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 134, 7600 (2012)

    Article  CAS  Google Scholar 

  43. Y. Liu, X. Chen, Chapter eleven—black titanium dioxide for photocatalysis, in Semiconductors and Semimetals. ed. by Z. Mi, L. Wang, C. Jagadish (Elsevier, New York, 2017), p. 393

    Google Scholar 

  44. I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, K. Takeuchi, Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. J. Mol. Catal. A: Chem. 161, 205 (2000)

    Article  CAS  Google Scholar 

  45. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007)

    Article  CAS  Google Scholar 

  46. M. Gleń, B. Grzmil, Photostability and optical properties of modified titanium dioxide. Pure Appl. Chem. 84, 2531 (2012)

    Article  CAS  Google Scholar 

  47. Y. Liu, M. Xing, J. Zhang, Ti3+ and carbon co-doped TiO2 with improved visible light photocatalytic activity. Chin. J. Catal. 35, 1511 (2014)

    Article  CAS  Google Scholar 

  48. X. Liu, G. Zhu, X. Wang, X. Yuan, T. Lin, F. Huang, Progress in black titania: a new material for advanced photocatalysis. Adv. Energy Mater. 6, 1600452 (2016)

    Article  CAS  Google Scholar 

  49. S. Kumar, A. Jain, H. Miyaoka, T. Ichikawa, Y. Kojima, Study on the thermal decomposition of NaBH4 catalyzed by ZrCl4. Int. J. Hydrog. Energy 42, 22432 (2017)

    Article  CAS  Google Scholar 

  50. J. Su, X. Zou, J.-S. Chen, Self-modification of titanium dioxide materials by Ti3+ and/or oxygen vacancies: new insights into defect chemistry of metal oxides. RSC Adv. 4, 13979 (2014)

    Article  CAS  Google Scholar 

  51. Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987 (2014)

    Article  CAS  Google Scholar 

  52. M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, X. Zhao, Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. J. Am. Chem. Soc. 133, 16414 (2011)

    Article  CAS  Google Scholar 

  53. C.A. Aggelopoulos, M. Dimitropoulos, A. Govatsi, L. Sygellou, C.D. Tsakiroglou, S.N. Yannopoulos, Influence of the surface-to-bulk defects ratio of ZnO and TiO2 on their UV-mediated photocatalytic activity. Appl. Catal. B 205, 292 (2017)

    Article  CAS  Google Scholar 

  54. X. Zou, J. Liu, J. Su, F. Zuo, J. Chen, P. Feng, Facile synthesis of thermal- and photostable titania with paramagnetic oxygen vacancies for visible-light photocatalysis. Chem. Eur. J. 19, 2866 (2013)

    Article  CAS  Google Scholar 

  55. Z. Wang, C. Yang, T. Lin, H. Yin, P. Chen, D. Wan, F. Xu, F. Huang, J. Lin, X. Xie, M. Jiang, Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ. Sci. 6, 3007 (2013)

    Article  CAS  Google Scholar 

  56. L.B. López-Sosa, M. González-Avilés, L.M. Hernández-Ramírez, A. Medina-Flores, T. López-Luke, M. Bravo-Sánchez, J. Zárate-Medina, Ecological solar absorber coating: a proposal for the use of residual biomass and recycled materials for energy conversion. Sol. Energy 202, 238 (2020)

    Article  CAS  Google Scholar 

  57. G. Wang, Y. Fu, X. Ma, W. Pi, D. Liu, X. Wang, Reusable reduced graphene oxide based double-layer system modified by polyethylenimine for solar steam generation. Carbon 114, 117 (2017)

    Article  CAS  Google Scholar 

  58. Y. Bian, K. Tang, Z. Xu, J. Ma, Y. Shen, L. Hao, X. Chen, K. Nie, J. Li, T. Ma, S. Zhu, J. Ye, X. Xiong, Y. Yang, R. Zhang, Y. Zheng, S. Gu, Highly efficient solar steam generation by hybrid plasmonic structured TiN/mesoporous anodized alumina membrane. J. Mater. Res. 33(22), 3857 (2018)

    Article  CAS  Google Scholar 

  59. R.H. Jasim, A.A. Al-Tabbakh, S.M. Hasan, Improvement of the solar-thermal characteristics of the flat-plate collector using a composite coating. Al-Nahrain J. Sci. 24, 24 (2021)

    Article  Google Scholar 

  60. H. Arami, M. Mazloumi, R. Khalifehzadeh, S.K. Sadrnezhaad, Sonochemical preparation of TiO2 nanoparticles. Mater. Lett. 61(23), 4559 (2007)

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this paper.

Corresponding author

Correspondence to Abderrahman Sayed.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelmaksoud, M.K., Sayed, A., Sayed, S. et al. A novel solar radiation absorption enhancement of TiO2 nanomaterial by a simple hydrogenation method. Journal of Materials Research 36, 2118–2131 (2021). https://doi.org/10.1557/s43578-021-00263-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00263-w

Keywords

Navigation