Abstract
Black titanium dioxide is produced by straightforward hydrogenation of its Anatase white counterpart at a relatively low temperature of 325 °C. X-ray measurements show that the average crystallite size is reduced by 37% due to the hydrogenation process. This decline in crystallite size is further confirmed by the Raman spectra of the inspected samples. Instead, the micrographs of the transmission electron microscope indicate that the average particle size of the black and white titanium dioxide is about 126 ± 45 nm and 109 ± 32 nm, respectively. Moreover, the optical bandgap drops as a result of the hydrogenation, which is explained by the presence of the localized states of Ti3+ ions and/or oxygen vacancies in hydrogenated TiO2 as verified by the X-ray photoelectron spectroscopy (XPS) measurements. The black oxide shows significant photothermal properties and a considerable maximum attainable temperature under a continuous solar illumination. Most importantly, the hydrogenated oxide enhances the solar radiation absorption considerably near the optimum solar intensity.
Graphic abstract
Similar content being viewed by others
Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
A. Hepbasli, A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renew. Sustain. Energy Rev. 12, 593 (2008)
L. Wei, Y. Lu, Z. Fang, R. Zhang, D. Ma, C. Lu, Z. Xu, S. Tao, Novel solar absorptive and infrared reflective properties of Cu-doped Sm0.5Sr0.5CoO3−δ. J. Mater. Sci. 27, 11777 (2016)
L.A. Al-Hajji, A.A. Ismail, M. Alsaidi, S.A. Ahmed, F. Almutawa, A. Bumajdad, Comparison of TiO2 nanowires and TiO2 nanoparticles for photodegradation of resorcinol as endocrine model. J. Nanoparticle Res. (2020). https://doi.org/10.1007/s11051-020-4757-1
H. Jing, Q. Cheng, J.M. Weller, X.S. Chu, Q.H. Wang, C.K. Chan, Synthesis of TiO2 nanosheet photocatalysts from exfoliation of TiS2 and hydrothermal treatment. J. Mater. Res. 33, 3540 (2018)
A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972)
F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, P. Feng, Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J. Am. Chem. Soc. 132, 11856 (2010)
T. Xia, C. Zhang, N.A. Oyler, X. Chen, Enhancing microwave absorption of TiO2 nanocrystals via hydrogenation. J. Mater. Res. 29, 2198 (2014)
S.-Y. Lee, S.-J. Park, TiO2 photocatalyst for water treatment applications. J. Ind. Eng. Chem. 19, 1761 (2013)
S. Cassaignon, C. Colbeau-Justin, O. Durupthy, Titanium dioxide in photocatalysis, in Nanomaterials: A Danger or a Promise?. ed. by R. Brayner, F. Fiévet, T. Coradin (Springer, London, 2013), p. 153
H.-X. Guo, K.-L. Lin, Z.-S. Zheng, F.-B. Xiao, S.-X. Li, Sulfanilic acid-modified P25 TiO2 nanoparticles with improved photocatalytic degradation on Congo red under visible light. Dyes Pigm. 92, 1278 (2012)
X. Chen, C. Burda, The electronic origin of the visible-light absorption properties of C-, N-and S-doped TiO2 nanomaterials. J. Am. Chem. Soc. 130, 5018 (2008)
X. Pan, M.Q. Yang, X. Fu, N. Zhang, Y.J. Xu, Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 5, 3601 (2013)
X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746 (2011)
J. Tian, Y. Leng, H. Cui, H. Liu, Hydrogenated TiO2 nanobelts as highly efficient photocatalytic organic dye degradation and hydrogen evolution photocatalyst. J. Hazard. Mater. 299, 165 (2015)
M. Tian, C. Liu, J. Ge, D. Geohegan, G. Duscher, G. Eres, Recent progress in characterization of the core–shell structure of black titania. J. Mater. Res. 34, 1138 (2019)
G. Zhu, T. Lin, X. Lü, W. Zhao, C. Yang, Z. Wang, H. Yin, Z. Liu, F. Huang, J. Lin, Black brookite titania with high solar absorption and excellent photocatalytic performance. J. Mater. Chem. A 1, 9650 (2013)
J. Xu, X. Qi, C. Luo, J. Qiao, R. Xie, Y. Sun, W. Zhong, Q. Fu, C. Pan, Synthesis and enhanced microwave absorption properties: a strongly hydrogenated TiO2 nanomaterial. Nanotechnology 28, 425701 (2017)
W. Hu, L. Li, G. Li, C. Tang, L. Sun, High-quality brookite TiO2 flowers: synthesis, characterization, and dielectric performance. Cryst. Growth Des. 9, 3676 (2009)
X. Liu, B. Hou, G. Wang, Z. Cui, X. Zhu, X. Wang, Black titania/graphene oxide nanocomposite films with excellent photothermal property for solar steam generation. J. Mater. Res. 33, 674 (2018)
C.S. Campos, E.R. Spada, F.R. Paula, F.T. Reis, R.M. Faria, M.L. Sartorelli, Raman and XRD study on brookite-anatase coexistence in cathodic electrosynthesized titania. J. Raman Spectrosc. 43, 433 (2012)
Y. Hu, H.-L. Tsai, C.-L. Huang, Effect of brookite phase on the anatase–rutile transition in titania nanoparticles. J. Eur. Ceram. Soc. 23, 691 (2003)
xxx Madhvi, L. Singh, S. Saroj, Y. Lee, S.V. Singh, Facile synthesis of nano-crystalline anatase TiO2 and their applications in degradation of Direct blue 199. J. Mater. Sci. 27, 2581 (2015)
X.M. Wang, P. Xiao, Morphology tuning in nontemplated solvothermal synthesis of titania nanoparticles. J. Mater. Res. 21, 1189 (2006)
J.-G. Li, T. Ishigaki, X. Sun, Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: phase-selective synthesis and physicochemical properties. J. Phys. Chem. C. 111, 4969 (2007)
A.O. Juma, I.O. Acik, V. Mikli, A. Mere, M. Krunks, Effect of solution composition on anatase to rutile transformation of sprayed TiO2 thin films. Thin Solid Films 594, 287 (2015)
X.X.X. Anita, A.K. Yadav, N. Khatun, S. Kumar, C.-M. Tseng, S. Biring, S. Sen, Size and strain dependent anatase to rutile phase transition in TiO2 due to Si incorporation. J. Mater. Sci. 28, 19017 (2017)
X. Wang, R. Fu, Q. Yin, H. Wu, X. Guo, R. Xu, Q. Zhong, Black TiO2 synthesized via magnesiothermic reduction for enhanced photocatalytic activity. J. Nanoparticle Res. (2018). https://doi.org/10.1007/s11051-018-4188-4
Z. Zheng, B. Huang, J. Lu, Z. Wang, X. Qin, X. Zhang, Y. Dai, M.H. Whangbo, Hydrogenated titania: synergy of surface modification and morphology improvement for enhanced photocatalytic activity. Chem. Commun. 48, 5733 (2012)
L. Zhang, Y. Jiang, X. Li, S. Wang, Y. Xiao, Preparation of titanium dioxide nanoparticles modified with methacrylate and their electrophoretic properties. J. Mater. Sci. 26, 5263 (2015)
A. Mohamed, T.A. Osman, M.S. Toprak, M. Muhammed, A. Uheida, Surface functionalized composite nanofibers for efficient removal of arsenic from aqueous solutions. Chemosphere 180, 108 (2017)
I.A. Mkhalid, J.L.G. Fierro, R.M. Mohamed, A.A. Alshahri, Impact of the PtO loading on mesoporous TiO2 nanoparticles for enhanced photodegradation of Imazapyr herbicide under simulated solar light. J. Nanoparticle Res. (2020). https://doi.org/10.1007/s11051-020-05072-6
C. Drouet, P. Alphonse, A. Rousset, IR spectroscopic study of NO and CO adsorptions on nonstoichiometric nickel–copper manganites. Phys. Chem. Chem. Phys. 3, 3826 (2001)
A. Sinhamahapatra, J.-P. Jeon, J.-S. Yu, A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy Environ. Sci. 8, 3539 (2015)
X. Wang, Y. Li, X. Liu, S. Gao, B. Huang, Y. Dai, Preparation of Ti3+ self-doped TiO2 nanoparticles and their visible light photocatalytic activity. Chin. J. Catal. 36, 389 (2015)
Y. Su, J. Cao, L. Li, G. Zhang, P. Zheng, TiO2 hollow spheres with surface-rich Ti3+ under Pd-catalyzed hydrogenation for improved visible-light photocatalysis. J. Nanoparticle Res. (2019). https://doi.org/10.1007/s11051-019-4470-0
D. Ariyanti, L. Mills, J. Dong, Y. Yao, W. Gao, NaBH4 modified TiO2: defect site enhancement related to its photocatalytic activity. Mater. Chem. Phys. 199, 571 (2017)
B.S. Shirke, P.V. Korake, P.P. Hankare, S.R. Bamane, K.M. Garadkar, Synthesis and characterization of pure anatase TiO2 nanoparticles. J. Mater. Sci. 22, 821 (2010)
B.D. Viezbicke, S. Patel, B.E. Davis, D.P. Birnie, Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solidi (b) 252, 1700 (2015)
N. Singh, V. Murugadoss, J. Rajavedhanayagam, S. Angaiah, A wide solar spectrum light harvesting Ag2Se quantum dot-sensitized porous TiO2 nanofibers as photoanode for high-performance QDSC. J. Nanoparticle Res. (2019). https://doi.org/10.1007/s11051-019-4619-x
H. Peng, J. Li, S.-S. Li, J.-B. Xia, First-principles study of the electronic structures and magnetic properties of 3d transition metal-doped anatase TiO2. J. Phys. 20, 125207 (2008)
R. Asahi, Y. Taga, W. Mannstadt, A.J. Freeman, Electronic and optical properties of anatase TiO2. Phys. Rev. B 61, 7459 (2000)
A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C.L. Bianchi, R. Psaro, V. Dal Santo, Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 134, 7600 (2012)
Y. Liu, X. Chen, Chapter eleven—black titanium dioxide for photocatalysis, in Semiconductors and Semimetals. ed. by Z. Mi, L. Wang, C. Jagadish (Elsevier, New York, 2017), p. 393
I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, K. Takeuchi, Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. J. Mol. Catal. A: Chem. 161, 205 (2000)
X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007)
M. Gleń, B. Grzmil, Photostability and optical properties of modified titanium dioxide. Pure Appl. Chem. 84, 2531 (2012)
Y. Liu, M. Xing, J. Zhang, Ti3+ and carbon co-doped TiO2 with improved visible light photocatalytic activity. Chin. J. Catal. 35, 1511 (2014)
X. Liu, G. Zhu, X. Wang, X. Yuan, T. Lin, F. Huang, Progress in black titania: a new material for advanced photocatalysis. Adv. Energy Mater. 6, 1600452 (2016)
S. Kumar, A. Jain, H. Miyaoka, T. Ichikawa, Y. Kojima, Study on the thermal decomposition of NaBH4 catalyzed by ZrCl4. Int. J. Hydrog. Energy 42, 22432 (2017)
J. Su, X. Zou, J.-S. Chen, Self-modification of titanium dioxide materials by Ti3+ and/or oxygen vacancies: new insights into defect chemistry of metal oxides. RSC Adv. 4, 13979 (2014)
Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987 (2014)
M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, X. Zhao, Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. J. Am. Chem. Soc. 133, 16414 (2011)
C.A. Aggelopoulos, M. Dimitropoulos, A. Govatsi, L. Sygellou, C.D. Tsakiroglou, S.N. Yannopoulos, Influence of the surface-to-bulk defects ratio of ZnO and TiO2 on their UV-mediated photocatalytic activity. Appl. Catal. B 205, 292 (2017)
X. Zou, J. Liu, J. Su, F. Zuo, J. Chen, P. Feng, Facile synthesis of thermal- and photostable titania with paramagnetic oxygen vacancies for visible-light photocatalysis. Chem. Eur. J. 19, 2866 (2013)
Z. Wang, C. Yang, T. Lin, H. Yin, P. Chen, D. Wan, F. Xu, F. Huang, J. Lin, X. Xie, M. Jiang, Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ. Sci. 6, 3007 (2013)
L.B. López-Sosa, M. González-Avilés, L.M. Hernández-Ramírez, A. Medina-Flores, T. López-Luke, M. Bravo-Sánchez, J. Zárate-Medina, Ecological solar absorber coating: a proposal for the use of residual biomass and recycled materials for energy conversion. Sol. Energy 202, 238 (2020)
G. Wang, Y. Fu, X. Ma, W. Pi, D. Liu, X. Wang, Reusable reduced graphene oxide based double-layer system modified by polyethylenimine for solar steam generation. Carbon 114, 117 (2017)
Y. Bian, K. Tang, Z. Xu, J. Ma, Y. Shen, L. Hao, X. Chen, K. Nie, J. Li, T. Ma, S. Zhu, J. Ye, X. Xiong, Y. Yang, R. Zhang, Y. Zheng, S. Gu, Highly efficient solar steam generation by hybrid plasmonic structured TiN/mesoporous anodized alumina membrane. J. Mater. Res. 33(22), 3857 (2018)
R.H. Jasim, A.A. Al-Tabbakh, S.M. Hasan, Improvement of the solar-thermal characteristics of the flat-plate collector using a composite coating. Al-Nahrain J. Sci. 24, 24 (2021)
H. Arami, M. Mazloumi, R. Khalifehzadeh, S.K. Sadrnezhaad, Sonochemical preparation of TiO2 nanoparticles. Mater. Lett. 61(23), 4559 (2007)
Funding
No funding was received for conducting this study.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to this paper.
Corresponding author
Ethics declarations
Conflict of interest
The authors have no conflicts of interest to declare that are relevant to the content of this article.
Rights and permissions
About this article
Cite this article
Abdelmaksoud, M.K., Sayed, A., Sayed, S. et al. A novel solar radiation absorption enhancement of TiO2 nanomaterial by a simple hydrogenation method. Journal of Materials Research 36, 2118–2131 (2021). https://doi.org/10.1557/s43578-021-00263-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43578-021-00263-w