Skip to main content
Log in

Mechanical properties of Al2O3-functionalized nanoporous gold foams under irradiation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanoporous gold (np-Au) has unique properties due to its high surface-to-volume ratio; in particular, it displays different degrees of radiation sensitivity, from radiation tolerance to significant radiation-induced hardening. However, its thermal instability and propensity to coarsening limit practical applications. It is known that oxide functionalization of np-Au surface improves thermal stability and increases both hardness and elastic modulus of the metallic foam. Nevertheless, the changes in the material properties under irradiation have not been investigated yet. In this work, we address the questions of radiation sensitivity of atomic layer deposition (ALD)-coated np-Au, and how its mechanical properties change after irradiation. ALD Al2O3-coated gold nanofoams were synthetized and irradiated with Ne++ ions and their mechanical behavior was evaluated by nanoindentation. It is concluded that the as-prepared functionalized np-Au hardens and stiffens after ion irradiation depending on the dose, without losing toughness and wear resistance.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Y. Ding, M. Chen, J. Erlebacher, Metallic mesoporous nanocomposites for electrocatalysis. J. Am. Chem. Soc. 126, 6876 (2004)

    Article  CAS  Google Scholar 

  2. J. Snyder et al., Oxygen reduction in nanoporous metal–ionic liquid composite electrocatalysts. Nat. Mater. 9, 904 (2010)

    Article  CAS  Google Scholar 

  3. A. Wittstock et al., Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 327, 319 (2010)

    Article  CAS  Google Scholar 

  4. Y. Ding, M. Chen, Nanoporous metals for catalytic and optical applications. MRS Bull. 34, 569 (2009)

    Article  CAS  Google Scholar 

  5. J. Biener et al., Surface-chemistry-driven actuation in nanoporous gold. Nat. Mater. 8, 47 (2009)

    Article  CAS  Google Scholar 

  6. L. Chen, T. Fujita, M. Chen, Biofunctionalized nanoporous gold for electrochemical biosensors. Electroch. Acta 67, 1 (2012)

    Article  CAS  Google Scholar 

  7. E. Detsi et al., Metallic muscles and beyond: nanofoams at work. J. Mater. Sci. 51, 615 (2016)

    Article  CAS  Google Scholar 

  8. S.J. Zinkle, N.M. Ghoniem, Prospects for accelerated development of high performance structural materials. J. Nucl. Mater. 417, 2 (2011)

    Article  CAS  Google Scholar 

  9. E.M. Bringa et al., Are nanoporous materials radiation resistant? Nano Lett. 12, 3351 (2012)

    Article  CAS  Google Scholar 

  10. I. Beyerlein et al., Radiation damage tolerant nanomaterials. Mater. Today 16, 443 (2013)

    Article  CAS  Google Scholar 

  11. N.J. Briot et al., In situ TEM investigation of self-ion irradiation of nanoporous gold. J. Mater. Sci. 54, 7271 (2019)

    Article  CAS  Google Scholar 

  12. J. Weissmüller et al., Nanoporous metals by alloy corrosion: formation and mechanical properties. MRS Bull. 34, 577 (2009)

    Article  Google Scholar 

  13. J. Weissmüller, K. Sieradzki, Dealloyed nanoporous materials with interface-controlled behavior. MRS Bull. 43, 14 (2018)

    Article  CAS  Google Scholar 

  14. J. Biener et al., Size effects on the mechanical behavior of nanoporous Au. Nano Lett. 6, 2379 (2006)

    Article  CAS  Google Scholar 

  15. J. Biener et al., Nanoporous Au: A high yield strength material. J. Appl. Phys. 97, 024301 (2005)

    Article  CAS  Google Scholar 

  16. A. Hodge et al., Scaling equation for yield strength of nanoporous open-cell foams. Acta Mater. 55, 1343 (2007)

    Article  CAS  Google Scholar 

  17. D. Farkas et al., Mechanical response of nanoporous gold. Acta Mater. 61, 3249 (2013)

    Article  CAS  Google Scholar 

  18. G. Pia, F. Delogu, Nanoporous Au: statistical analysis of morphological features and evaluation of their influence on the elastic deformation behavior by phenomenological modeling. Acta Mater. 85, 250 (2015)

    Article  CAS  Google Scholar 

  19. J. Jiao, N. Huber, Deformation mechanisms in nanoporous metals: effect of ligament shape and disorder. Comp. Mater. Sci. 127, 194 (2017)

    Article  CAS  Google Scholar 

  20. D. Farkas et al., Indentation response of nanoporous gold from atomistic simulations. J. Mater. Res. 33, 1382 (2018)

    Article  CAS  Google Scholar 

  21. R. Dou, B. Derby, Strain gradients and the strength of nanoporous gold. J. Mater. Res. 25, 746 (2010)

    Article  CAS  Google Scholar 

  22. L.-Z. Liu, X.-L. Ye, H.-J. Jin, Interpreting anomalous low-strength and low-stiffness of nanoporous gold: quantification of network connectivity. Acta Mater. 118, 77 (2016)

    Article  CAS  Google Scholar 

  23. K. Mangipudi, E. Epler, C. Volkert, Topology-dependent scaling laws for the stiffness and strength of nanoporous gold. Acta Mater. 119, 115 (2016)

    Article  CAS  Google Scholar 

  24. E.T. Lilleodden, P.W. Voorhees, On the topological, morphological, and microstructural characterization of nanoporous metals. MRS Bull. 43, 20 (2018)

    Article  CAS  Google Scholar 

  25. E. Detsi et al., On the specific surface area of nanoporous materials. Acta Mater. 59, 7488 (2011)

    Article  CAS  Google Scholar 

  26. N. Mameka et al., Nanoporous gold—testing macro-scale samples to probe small-scale mechanical behavior. Mater. Res. Lett. 4, 27 (2016)

    Article  Google Scholar 

  27. H.-J. Jin, J. Weissmüller, D. Farkas, Mechanical response of nanoporous metals: a story of size, surface stress, and severed struts. MRS Bull. 43, 35 (2018)

    Article  CAS  Google Scholar 

  28. Y. Li et al., Topology evolution during coarsening of nanoscale metal network structures. Phys. Rev. Mater. 3, 076001 (2019)

    Article  CAS  Google Scholar 

  29. E. Fu et al., Surface effects on the radiation response of nanoporous Au foams. Appl. Phys. Lett. 101, 191607 (2012)

    Article  CAS  Google Scholar 

  30. M. Caro et al., Radiation induced effects on mechanical properties of nanoporous gold foams. Appl. Phys. Lett. 104, 233109 (2014)

    Article  CAS  Google Scholar 

  31. L. Zepeda-Ruiz et al., Deformation mechanisms of irradiated metallic nanofoams. Appl. Phys. Lett. 103, 031909 (2013)

    Article  CAS  Google Scholar 

  32. C.J. Ruestes et al., Nanoindentation tests of heavy-ion-irradiated Au foams—molecular dynamics simulation. J. Appl. Phys. 123, 225903 (2018)

    Article  CAS  Google Scholar 

  33. D.R. Gomes et al., Size-dependent ion-induced densification of nanoporous gold. Scr. Mater. 164, 17 (2019)

    Article  CAS  Google Scholar 

  34. M.M. Biener et al., ALD functionalized nanoporous gold: thermal stability, mechanical properties, and catalytic activity. Nano Lett. 11, 3085 (2011)

    Article  CAS  Google Scholar 

  35. H. Im et al., Atomic layer deposition: a versatile technique for plasmonics and nanobiotechnology. J. Mater. Res. 27, 663 (2012)

    Article  CAS  Google Scholar 

  36. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM–The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010)

    Article  CAS  Google Scholar 

  37. A.C. Fischer-Cripps, Nanoindentation, 3rd edn. (Springer, New York, 2011).

    Book  Google Scholar 

  38. J. Hay, B. Crawford, Measuring substrate-independent modulus of thin films. J. Mater. Res. 26, 727 (2011)

    Article  CAS  Google Scholar 

  39. C. Volkert et al., Approaching the theoretical strength in nanoporous Au. Appl. Phys. Lett. 89, 061920 (2006)

    Article  CAS  Google Scholar 

  40. D. Lee et al., Microfabrication and mechanical properties of nanoporous gold at the nanoscale. Scr. Mater. 56, 437 (2007)

    Article  CAS  Google Scholar 

  41. A. Leitner et al., Interface dominated mechanical properties of ultra-fine grained and nanoporous Au at elevated temperatures. Acta Mater. 121, 104 (2016)

    Article  CAS  Google Scholar 

  42. M.F. Ashby et al., Metal Foams: A Design Guide (Elsevier, Amsterdam, 2000).

    Google Scholar 

  43. N.J. Briot, T.J. Balk, Focused ion beam characterization of deformation resulting from nanoindentation of nanoporous gold. MRS Commun. 8, 132 (2018)

    Article  CAS  Google Scholar 

  44. S. Chen, L. Liu, T. Wang, Investigation of the mechanical properties of thin films by nanoindentation, considering the effects of thickness and different coating–substrate combinations. Surf. Coat. Technol. 191, 25 (2005)

    Article  CAS  Google Scholar 

  45. P. Liu et al., Time-resolved atomic-scale observations of deformation and fracture of nanoporous gold under tension. Acta Mater. 165, 99 (2019)

    Article  CAS  Google Scholar 

  46. J. Shin et al., Controlling dislocation nucleation-mediated plasticity in nanostructures via surface modification. Acta Mater. 166, 572 (2019)

    Article  CAS  Google Scholar 

  47. P. Wu et al., Monolayer oxide enhanced flow stress in nanoporous gold: the size dependence. Mater. Res. Lett. 6, 508 (2018)

    Article  CAS  Google Scholar 

  48. T. Oberle, Wear of metals. JOM 3, 438 (1951)

    Article  Google Scholar 

  49. A. Leyland, A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear 246, 1 (2000)

    Article  CAS  Google Scholar 

  50. I. Pana et al., Design, fabrication and characterization of TiO2-SiO2 multilayer with tailored color glazing for thermal solar collectors. Mater. Des. 130, 275 (2017)

    Article  CAS  Google Scholar 

  51. M.F. Ashby, D.R. Jones, Engineering Materials 1: An Introduction to Properties, Applications and Design, vol. 1 (Elsevier, Amsterdam, 2012).

    Google Scholar 

  52. J. Stuckner et al., AQUAMI: An open source Python package and GUI for the automatic quantitative analysis of morphologically complex multiphase materials. Comp. Mat. Sci. 139, 320 (2017)

    Article  CAS  Google Scholar 

  53. I. McCue et al., Gaining new insights into nanoporous gold by mining and analysis of published images. Sci. Rep. 8, 1 (2018)

    Article  CAS  Google Scholar 

  54. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992)

    Article  CAS  Google Scholar 

  55. L. Lührs et al., Elastic and plastic Poisson’s ratios of nanoporous gold. Scr. Mater. 110, 65 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work funded by the Los Alamos Laboratory Directed Research and Development (LDRD) Program. A.C. also acknowledges support from the DOE Energy Frontier Research Center (EFRC) for Materials under Irradiation and Mechanical Extremes. M.C. greatly acknowledges the team working with Y.Q. Wang at the LANL Ion Beam Materials Laboratory (IBML). Work performed in part at the Center for Integrated Nanotechnologies (CINT), an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Los Alamos and Sandia National Laboratories. C.J.R acknowledges support from ANPCyT PICT-2018-0773 and a SiiP-UNCuyo grant. D.F.L, J.I.R and M.C.F acknowledge support from ANPCyT (PICT 2015-0351 and 2017-1133). Silvia Adriana Dominguez (CAC-CNEA) and Claudia Marchi (CMA-UBA) are acknowledged for taking auxiliary SEM images of the samples. Nahuel Vega is acknowledged for helpful comments and discussion of the results.

Funding

Work funded by the Los Alamos Laboratory Directed Research and Development (LDRD) Program, ANPCyT PICT-2018-0773, PICT 2015-0351 and 2017-1133.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. C. Fuertes or C. J. Ruestes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 555 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lionello, D.F., Ramallo, J.I., Caro, M. et al. Mechanical properties of Al2O3-functionalized nanoporous gold foams under irradiation. Journal of Materials Research 36, 2001–2009 (2021). https://doi.org/10.1557/s43578-021-00262-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00262-x

Keywords

Navigation