Abstract
We used mechanical alloying to prepare FeCoNiMn0.5Alx (x = 0.0, 0.1, 0.2, 0.3, 0.4) alloy powders and then annealed at 773 K. All samples show a good soft magnetic performance. The maximum saturation magnetization (Ms) is 98.41 emu/g. With the increase of Al addition, the real part of the complex permittivity (ε′) first increases and then decreases. The real part (μ′) of the complex permeability varies between 1.76 and 2.1, and the imaginary part (μ″) varies between 0.53 and 0.74. The maximum reflection loss (RL) is − 38.414 dB. After annealing, new phases (CoFe2O4 and Al86Mn14) appear, improving the values of Ms (Msmax = 124.33 emu/g) and HC (Hcmax = 181.22 Oe). After annealing, the particle sizes of the powders also increase. All of these make the permittivity and permeability of the sample increase. The RLmin of annealed samples increase to − 42.851 dB. The results are significant to the research of high-entropy alloy powder as electromagnetic wave absorbing material.
Graphic abstract
Similar content being viewed by others
Data availability
Data are available on request to the authors.
References
N. Chen, D. Chen, F. Wei, S. Zhao, Y. Luo, Effect of structures on the adsorption performance of Cobalt Metal Organic Framework obtained by microwave-assisted ball milling. Chem. Phys. Lett. 705, 23–30 (2018)
S. Qiu, H. Lyu, J. Liu, Y. Liu, N. Wu, W. Liu, Facile synthesis of porous nickel/carbon composite microspheres with enhanced electromagnetic wave absorption by magnetic and dielectric losses. ACS Appl. Mater. Interfaces. 8(31), 20258–20266 (2016)
Y.-Z. Zhang, Z.-T. Kang, D. Chen, Process of synthesizing high saturation magnetization Ni0.5Zn0.5Fe2O4 by microwave assisted ball milling. Mater. Lett. 133, 259–261 (2014)
F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang, D. Hui et al., Graphene-based microwave absorbing composites: a review and prospective. Compos. Part B Eng. 137, 260–277 (2018)
N. Shi, H. Xu, C. Chen, Y. Wu, B. Yang, T. Zhang, Nanolayered flaky Fe-based amorphous-nanocrystalline/graphite sheet composites with enhanced microwave absorbing properties. J. Alloys Compd. 797, 39–44 (2019)
W. Xie, H. Cheng, Z. Chu, Z. Chen, C. Long, Effect of carbonization temperature on the structure and microwave absorbing properties of hollow carbon fibres. Ceram. Int. 37(6), 1947–1951 (2011)
Y.-Z. Zhang, Z.-T. Kang, D. Chen, Synthesis and microwave absorbing properties of Mn-Zn nanoferrite produced by microwave assisted ball milling. J. Mater. Sci.: Mater. Electron. 25(10), 4246–4251 (2014)
H. Guan, J. Xie, G. Chen, Y. Wang, Facile synthesis of alpha-MnO2 nanorods at low temperature and their microwave absorption properties. Mater. Chem. Phys. 143(3), 1061–1068 (2014)
Y. Wei, Y. Shi, Z. Jiang, X. Zhang, H. Chen, Y. Zhang et al., High performance and lightweight electromagnetic wave absorbers based on TiN/RGO flakes. J. Alloys Compd. 810, (2019)
H. Guan, G. Chen, S. Zhang, Y. Wang, Microwave absorption characteristics of manganese dioxide with different crystalline phase and nanostructures. Mater. Chem. Phys. 124(1), 639–645 (2010)
C. Stergiou, Magnetic, dielectric and microwave absorption properties of rare earth doped Ni-Co and Ni-Co-Zn spinel ferrites. J. Magn. Magn. Mater. 426, 629–635 (2017)
Y. Duan, Q. Xi, W. Liu, T. Wang, Broadband superior electromagnetic absorption of a discrete-structure microwave coating. J. Magn. Magn. Mater. 416, 155–163 (2016)
Y. Zhang, H. Si, S. Liu, Z. Jiang, J. Zhang, C. Gong, Facile synthesis of BN/Ni nanocomposites for effective regulation of microwave absorption performance. J. Alloys Compd. 850, (2021)
H. Pang, Y. Duan, J. Liu, B. Zhang, Low-temperature synthesis and microwave absorbing properties of Mn3O4-graphene nanocomposite. J. Mater. Res. 33(23), 4062–4070 (2018)
T. Kim, J. Lee, K. Lee, B. Park, B.M. Jung, S.B. Lee, Magnetic and dispersible FeCoNi-graphene film produced without heat treatment for electromagnetic wave absorption. Chem. Eng. J. 361, 1182–1189 (2019)
C. Chen, H. Zhang, Y. Fan, R. Wei, W. Zhang, T. Wang et al., Improvement of corrosion resistance and magnetic properties of FeCoNiAl0.2Si0.2 high entropy alloy via rapid-solidification. Intermetallics 122, (2020)
M.C. Haciismailoglu, K. Sarlar, A. Tekgul, I. Kucuk, Thermally evaporated FeMGaMnSi (M = Co, Ni) high entropy alloy thin films: magnetic and magnetoresistance properties. J. Non-Cryst. Solids 539, (2020)
T. Zuo, X. Yang, P.K. Liaw, Y. Zhang, Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy. Intermetallics 67, 171–176 (2015)
Y. Yuan, Y. Wu, Z. Yang, X. Liang, Z. Lei, H. Huang et al., Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys. Mater. Res. Lett. 7(6), 225–231 (2019)
T. Borkar, B. Gwalani, D. Choudhuri, C.V. Mikler, C.J. Yannetta, X. Chen et al., A combinatorial assessment of AlxCrCuFeNi2(0 < x < 1.5) complex concentrated alloys: microstructure, microhardness, and magnetic properties. Acta Mater. 116, 63–76 (2016)
J. Wang, S. Wu, S. Fu, S. Liu, M. Yan, Q. Lai et al., Ultrahigh hardness with exceptional thermal stability of a nanocrystalline CoCrFeNiMn high-entropy alloy prepared by inert gas condensation. Scr. Mater. 187, 335–339 (2020)
F. Prusa, M. Cabibbo, A. Senkova, V. Kucera, Z. Veselka, A. Skolakova et al., High-strength ultrafine-grained CoCrFeNiNb high-entropy alloy prepared by mechanical alloying: properties and strengthening mechanism. J. Alloys Compd. 835, 155308 (2020)
A. Raza, S. Abdulahad, B. Kang, H.J. Ryu, S.H. Hong, Corrosion resistance of weight reduced AlxCrFeMoV high entropy alloys. Appl. Surf. Sci. 485, 368–374 (2019)
Y. Shi, L. Collins, R. Feng, C. Zhang, N. Balke, P.K. Liaw et al., Homogenization of AlxCoCrFeNi high-entropy alloys with improved corrosion resistance. Corros. Sci. 133, 120–131 (2018)
Y. Yu, J. Wang, J. Yang, Z. Qiao, H. Duan, J. Li et al., Corrosive and tribological behaviors of AlCoCrFeNi-M high entropy alloys under 90 wt% H2O2 solution. Tribol. Int. 131, 24–32 (2019)
M.-H. Chuang, M.-H. Tsai, W.-R. Wang, S.-J. Lin, J.-W. Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 59(16), 6308–6317 (2011)
J. Dabrowa, G. Cieslak, M. Stygar, K. Mroczka, K. Berent, T. Kulik et al., Influence of Cu content on high temperature oxidation behavior of AlCoCrCuxFeNi high entropy alloys (x = 0; 0.5; 1). Intermetallics 84, 52–61 (2017)
J.Y. He, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, High-temperature plastic flow of a precipitation-hardened FeCoNiCr high entropy alloy. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 686, 34–40 (2017)
P. Yang, Y. Liu, X. Zhao, C. Zhang, Electromagnetic wave absorption properties for FeCoNiCr alloy powders with magnetic field heat treatment. J. Mater. Sci.-Mater. Electron. 28(13), 9867–9875 (2017)
P. Yang, Y. Liu, X. Zhao, J. Cheng, H. Li, Electromagnetic wave absorption properties of mechanically alloyed FeCoNiCrAl high entropy alloy powders. Adv. Powder Technol. 27(4), 1128–1133 (2016)
Y. Duan, X. Wen, B. Zhang, G. Ma, T. Wang, Optimizing the electromagnetic properties of the FeCoNiAlCrx high entropy alloy powders by composition adjustment and annealing treatment. J. Magn. Magn. Mater. 497, 165947 (2020)
Y. Duan, Y. Cui, B. Zhang, G. Ma, T. Wang, A novel microwave absorber of FeCoNiCuAl high-entropy alloy powders: adjusting electromagnetic performance by ball milling time and annealing. J. Alloys Compd. 773, 194–201 (2019)
Y. Zhang, B. Zhang, K. Li, G.-L. Zhao, S.M. Guo, Electromagnetic interference shielding effectiveness of high entropy AlCoCrFeNi alloy powder laden composites. J. Alloys Compd. 734, 220–228 (2018)
Z. Bin, D. Yuping, C. Yulong, M. Guojia, W. Tongmin, D. Xinglong, Improving electromagnetic properties of FeCoNiSi0.4Al0.4 high entropy alloy powders via their tunable aspect ratio and elemental uniformity. Mater. Des. 149, 173–183 (2018)
B. Zhang, Y. Duan, H. Zhang, S. Huang, G. Ma, T. Wang et al., Magnetic transformation of Mn from anti-ferromagnetism to ferromagnetism in FeCoNiZMn(x) (Z = Si, Al, Sn, Ge) high entropy alloys. J. Mater. Sci. Technol. 68, 124–131 (2021)
Y.-L. Chen, Y.-H. Hu, C.-A. Hsieh, J.-W. Yeh, S.-K. Chen, Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system. J. Alloys Compd. 481(1–2), 768–775 (2009)
P. Yang, Y. Liu, X. Zhao, J. Cheng, H. Li, Electromagnetic wave absorption properties of FeCoNiCrAl0.8 high entropy alloy powders and its amorphous structure prepared by high-energy ball milling. J. Mater. Res. 31(16), 2398–2406 (2016)
B. Zhao, B. Fan, G. Shao, B. Wang, X. Pian, W. Li et al., Investigation on the electromagnetic wave absorption properties of Ni chains synthesized by a facile solvothermal method. Appl. Surf. Sci. 307, 293–300 (2014)
Y. Zhang, T. Zuo, Y. Cheng, P.K. Liaw, High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1–7 (2013)
G. Li, Y. Cui, N. Zhang, X. Wang, J.L. Xie, The precipitation in annealing and its effect on permittivity of Fe-Si-Al powders. Phys. B-Condens. Matter. 481, 1–7 (2016)
B. Zhang, Y. Duan, Y. Cui, G. Ma, T. Wang, X. Dong, A new mechanism for improving electromagnetic properties based on tunable crystallographic structures of FeCoNiSixAl0.4 high entropy alloy powders. RSC Adv. 8(27), 14936–14946 (2018)
Y. Zhang, Z. Wang, B. Zhang, C. Zhou, G.-L. Zhao, J. Jiang et al., Morphology and electromagnetic interference shielding effects of SiC coated carbon short fibers. J. Mater. Chem. C 3(37), 9684–9694 (2015)
S. Wen, Y. Liu, X. Zhao, J. Cheng, H. Li, Facile synthesis of novel cobalt particles by reduction method and their microwave absorption properties. Powder Technol. 264, 128–132 (2014)
Y. Duan, S. Gu, Z. Zhang, M. Wen, Characterization of structures and novel magnetic response of Fe87.5Si7Al5.5 alloy processed by ball milling. J. Alloys Compd. 542, 90–96 (2012)
C. Wang, X. Han, X. Zhang, S. Hu, T. Zhang, J. Wang et al., Controlled synthesis and morphology-dependent electromagnetic properties of hierarchical cobalt assemblies. J. Phys. Chem. C 114(35), 14826–14830 (2010)
J. Yang, J. Zhang, C. Liang, M. Wang, P. Zhao, M. Liu et al., Ultrathin BaTiO3 nanowires with high aspect ratio: a simple one-step hydrothermal synthesis and their strong microwave absorption. ACS Appl. Mater. Interfaces. 5(15), 7146–7151 (2013)
B. Zhao, G. Shao, B. Fan, W. Zhao, R. Zhang, Preparation and electromagnetic wave absorption properties of novel dendrite-like NiCu alloy composite. RSC Adv. 5(53), 42587–42590 (2015)
G. Zhu, Y. Liu, J. Ye, Early high-temperature oxidation behavior of Ti(C, N)-based cermets with multi-component AlCoCrFeNi high-entropy alloy binder. Int. J. Refract. Met. Hard Mater. 44, 35–41 (2014)
M. Zhang, Z. Jiang, X. Lv, X. Zhang, Y. Zhang, J. Zhang et al., Microwave absorption performance of reduced graphene oxide with negative imaginary permeability. J. Phys. D-Appl. Phys. 53(2), 02LT01 (2020)
Acknowledgments
The authors acknowledge the Support by Program for the National Natural Science Foundation of China (Nos. 52071053, U1704253), the National Key R&D Program of China (2017YFB0703103), and the Fundamental Research Funds for the Central Universities (DUT20GF111).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors have no conflicts of interest to declare that are relevant to the content of this article.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Duan, Y., Gao, M., Pang, H. et al. FeCoNiMnAl high-entropy alloy: Improving electromagnetic wave absorption properties. Journal of Materials Research 36, 2107–2117 (2021). https://doi.org/10.1557/s43578-021-00242-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43578-021-00242-1