Skip to main content

Advertisement

Log in

FeCoNiMnAl high-entropy alloy: Improving electromagnetic wave absorption properties

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We used mechanical alloying to prepare FeCoNiMn0.5Alx (x = 0.0, 0.1, 0.2, 0.3, 0.4) alloy powders and then annealed at 773 K. All samples show a good soft magnetic performance. The maximum saturation magnetization (Ms) is 98.41 emu/g. With the increase of Al addition, the real part of the complex permittivity (ε′) first increases and then decreases. The real part (μ′) of the complex permeability varies between 1.76 and 2.1, and the imaginary part (μ″) varies between 0.53 and 0.74. The maximum reflection loss (RL) is − 38.414 dB. After annealing, new phases (CoFe2O4 and Al86Mn14) appear, improving the values of Ms (Msmax = 124.33 emu/g) and HC (Hcmax = 181.22 Oe). After annealing, the particle sizes of the powders also increase. All of these make the permittivity and permeability of the sample increase. The RLmin of annealed samples increase to − 42.851 dB. The results are significant to the research of high-entropy alloy powder as electromagnetic wave absorbing material.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

Data are available on request to the authors.

References

  1. N. Chen, D. Chen, F. Wei, S. Zhao, Y. Luo, Effect of structures on the adsorption performance of Cobalt Metal Organic Framework obtained by microwave-assisted ball milling. Chem. Phys. Lett. 705, 23–30 (2018)

    Article  CAS  Google Scholar 

  2. S. Qiu, H. Lyu, J. Liu, Y. Liu, N. Wu, W. Liu, Facile synthesis of porous nickel/carbon composite microspheres with enhanced electromagnetic wave absorption by magnetic and dielectric losses. ACS Appl. Mater. Interfaces. 8(31), 20258–20266 (2016)

    Article  CAS  Google Scholar 

  3. Y.-Z. Zhang, Z.-T. Kang, D. Chen, Process of synthesizing high saturation magnetization Ni0.5Zn0.5Fe2O4 by microwave assisted ball milling. Mater. Lett. 133, 259–261 (2014)

    Article  CAS  Google Scholar 

  4. F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang, D. Hui et al., Graphene-based microwave absorbing composites: a review and prospective. Compos. Part B Eng. 137, 260–277 (2018)

    Article  CAS  Google Scholar 

  5. N. Shi, H. Xu, C. Chen, Y. Wu, B. Yang, T. Zhang, Nanolayered flaky Fe-based amorphous-nanocrystalline/graphite sheet composites with enhanced microwave absorbing properties. J. Alloys Compd. 797, 39–44 (2019)

    Article  CAS  Google Scholar 

  6. W. Xie, H. Cheng, Z. Chu, Z. Chen, C. Long, Effect of carbonization temperature on the structure and microwave absorbing properties of hollow carbon fibres. Ceram. Int. 37(6), 1947–1951 (2011)

    Article  CAS  Google Scholar 

  7. Y.-Z. Zhang, Z.-T. Kang, D. Chen, Synthesis and microwave absorbing properties of Mn-Zn nanoferrite produced by microwave assisted ball milling. J. Mater. Sci.: Mater. Electron. 25(10), 4246–4251 (2014)

    CAS  Google Scholar 

  8. H. Guan, J. Xie, G. Chen, Y. Wang, Facile synthesis of alpha-MnO2 nanorods at low temperature and their microwave absorption properties. Mater. Chem. Phys. 143(3), 1061–1068 (2014)

    Article  CAS  Google Scholar 

  9. Y. Wei, Y. Shi, Z. Jiang, X. Zhang, H. Chen, Y. Zhang et al., High performance and lightweight electromagnetic wave absorbers based on TiN/RGO flakes. J. Alloys Compd. 810, (2019)

    Article  CAS  Google Scholar 

  10. H. Guan, G. Chen, S. Zhang, Y. Wang, Microwave absorption characteristics of manganese dioxide with different crystalline phase and nanostructures. Mater. Chem. Phys. 124(1), 639–645 (2010)

    Article  CAS  Google Scholar 

  11. C. Stergiou, Magnetic, dielectric and microwave absorption properties of rare earth doped Ni-Co and Ni-Co-Zn spinel ferrites. J. Magn. Magn. Mater. 426, 629–635 (2017)

    Article  CAS  Google Scholar 

  12. Y. Duan, Q. Xi, W. Liu, T. Wang, Broadband superior electromagnetic absorption of a discrete-structure microwave coating. J. Magn. Magn. Mater. 416, 155–163 (2016)

    Article  CAS  Google Scholar 

  13. Y. Zhang, H. Si, S. Liu, Z. Jiang, J. Zhang, C. Gong, Facile synthesis of BN/Ni nanocomposites for effective regulation of microwave absorption performance. J. Alloys Compd. 850, (2021)

    Article  CAS  Google Scholar 

  14. H. Pang, Y. Duan, J. Liu, B. Zhang, Low-temperature synthesis and microwave absorbing properties of Mn3O4-graphene nanocomposite. J. Mater. Res. 33(23), 4062–4070 (2018)

    Article  CAS  Google Scholar 

  15. T. Kim, J. Lee, K. Lee, B. Park, B.M. Jung, S.B. Lee, Magnetic and dispersible FeCoNi-graphene film produced without heat treatment for electromagnetic wave absorption. Chem. Eng. J. 361, 1182–1189 (2019)

    Article  CAS  Google Scholar 

  16. C. Chen, H. Zhang, Y. Fan, R. Wei, W. Zhang, T. Wang et al., Improvement of corrosion resistance and magnetic properties of FeCoNiAl0.2Si0.2 high entropy alloy via rapid-solidification. Intermetallics 122, (2020)

    Article  CAS  Google Scholar 

  17. M.C. Haciismailoglu, K. Sarlar, A. Tekgul, I. Kucuk, Thermally evaporated FeMGaMnSi (M = Co, Ni) high entropy alloy thin films: magnetic and magnetoresistance properties. J. Non-Cryst. Solids 539, (2020)

    Article  CAS  Google Scholar 

  18. T. Zuo, X. Yang, P.K. Liaw, Y. Zhang, Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy. Intermetallics 67, 171–176 (2015)

    Article  CAS  Google Scholar 

  19. Y. Yuan, Y. Wu, Z. Yang, X. Liang, Z. Lei, H. Huang et al., Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys. Mater. Res. Lett. 7(6), 225–231 (2019)

    Article  CAS  Google Scholar 

  20. T. Borkar, B. Gwalani, D. Choudhuri, C.V. Mikler, C.J. Yannetta, X. Chen et al., A combinatorial assessment of AlxCrCuFeNi2(0 < x < 1.5) complex concentrated alloys: microstructure, microhardness, and magnetic properties. Acta Mater. 116, 63–76 (2016)

    Article  CAS  Google Scholar 

  21. J. Wang, S. Wu, S. Fu, S. Liu, M. Yan, Q. Lai et al., Ultrahigh hardness with exceptional thermal stability of a nanocrystalline CoCrFeNiMn high-entropy alloy prepared by inert gas condensation. Scr. Mater. 187, 335–339 (2020)

    Article  CAS  Google Scholar 

  22. F. Prusa, M. Cabibbo, A. Senkova, V. Kucera, Z. Veselka, A. Skolakova et al., High-strength ultrafine-grained CoCrFeNiNb high-entropy alloy prepared by mechanical alloying: properties and strengthening mechanism. J. Alloys Compd. 835, 155308 (2020)

    Article  CAS  Google Scholar 

  23. A. Raza, S. Abdulahad, B. Kang, H.J. Ryu, S.H. Hong, Corrosion resistance of weight reduced AlxCrFeMoV high entropy alloys. Appl. Surf. Sci. 485, 368–374 (2019)

    Article  CAS  Google Scholar 

  24. Y. Shi, L. Collins, R. Feng, C. Zhang, N. Balke, P.K. Liaw et al., Homogenization of AlxCoCrFeNi high-entropy alloys with improved corrosion resistance. Corros. Sci. 133, 120–131 (2018)

    Article  CAS  Google Scholar 

  25. Y. Yu, J. Wang, J. Yang, Z. Qiao, H. Duan, J. Li et al., Corrosive and tribological behaviors of AlCoCrFeNi-M high entropy alloys under 90 wt% H2O2 solution. Tribol. Int. 131, 24–32 (2019)

    Article  CAS  Google Scholar 

  26. M.-H. Chuang, M.-H. Tsai, W.-R. Wang, S.-J. Lin, J.-W. Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 59(16), 6308–6317 (2011)

    Article  CAS  Google Scholar 

  27. J. Dabrowa, G. Cieslak, M. Stygar, K. Mroczka, K. Berent, T. Kulik et al., Influence of Cu content on high temperature oxidation behavior of AlCoCrCuxFeNi high entropy alloys (x = 0; 0.5; 1). Intermetallics 84, 52–61 (2017)

    Article  CAS  Google Scholar 

  28. J.Y. He, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, High-temperature plastic flow of a precipitation-hardened FeCoNiCr high entropy alloy. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 686, 34–40 (2017)

    Article  CAS  Google Scholar 

  29. P. Yang, Y. Liu, X. Zhao, C. Zhang, Electromagnetic wave absorption properties for FeCoNiCr alloy powders with magnetic field heat treatment. J. Mater. Sci.-Mater. Electron. 28(13), 9867–9875 (2017)

    Article  CAS  Google Scholar 

  30. P. Yang, Y. Liu, X. Zhao, J. Cheng, H. Li, Electromagnetic wave absorption properties of mechanically alloyed FeCoNiCrAl high entropy alloy powders. Adv. Powder Technol. 27(4), 1128–1133 (2016)

    Article  CAS  Google Scholar 

  31. Y. Duan, X. Wen, B. Zhang, G. Ma, T. Wang, Optimizing the electromagnetic properties of the FeCoNiAlCrx high entropy alloy powders by composition adjustment and annealing treatment. J. Magn. Magn. Mater. 497, 165947 (2020)

    Article  CAS  Google Scholar 

  32. Y. Duan, Y. Cui, B. Zhang, G. Ma, T. Wang, A novel microwave absorber of FeCoNiCuAl high-entropy alloy powders: adjusting electromagnetic performance by ball milling time and annealing. J. Alloys Compd. 773, 194–201 (2019)

    Article  CAS  Google Scholar 

  33. Y. Zhang, B. Zhang, K. Li, G.-L. Zhao, S.M. Guo, Electromagnetic interference shielding effectiveness of high entropy AlCoCrFeNi alloy powder laden composites. J. Alloys Compd. 734, 220–228 (2018)

    Article  CAS  Google Scholar 

  34. Z. Bin, D. Yuping, C. Yulong, M. Guojia, W. Tongmin, D. Xinglong, Improving electromagnetic properties of FeCoNiSi0.4Al0.4 high entropy alloy powders via their tunable aspect ratio and elemental uniformity. Mater. Des. 149, 173–183 (2018)

    Article  CAS  Google Scholar 

  35. B. Zhang, Y. Duan, H. Zhang, S. Huang, G. Ma, T. Wang et al., Magnetic transformation of Mn from anti-ferromagnetism to ferromagnetism in FeCoNiZMn(x) (Z = Si, Al, Sn, Ge) high entropy alloys. J. Mater. Sci. Technol. 68, 124–131 (2021)

    Article  Google Scholar 

  36. Y.-L. Chen, Y.-H. Hu, C.-A. Hsieh, J.-W. Yeh, S.-K. Chen, Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system. J. Alloys Compd. 481(1–2), 768–775 (2009)

    Article  CAS  Google Scholar 

  37. P. Yang, Y. Liu, X. Zhao, J. Cheng, H. Li, Electromagnetic wave absorption properties of FeCoNiCrAl0.8 high entropy alloy powders and its amorphous structure prepared by high-energy ball milling. J. Mater. Res. 31(16), 2398–2406 (2016)

    Article  CAS  Google Scholar 

  38. B. Zhao, B. Fan, G. Shao, B. Wang, X. Pian, W. Li et al., Investigation on the electromagnetic wave absorption properties of Ni chains synthesized by a facile solvothermal method. Appl. Surf. Sci. 307, 293–300 (2014)

    Article  CAS  Google Scholar 

  39. Y. Zhang, T. Zuo, Y. Cheng, P.K. Liaw, High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1–7 (2013)

    Google Scholar 

  40. G. Li, Y. Cui, N. Zhang, X. Wang, J.L. Xie, The precipitation in annealing and its effect on permittivity of Fe-Si-Al powders. Phys. B-Condens. Matter. 481, 1–7 (2016)

    Article  CAS  Google Scholar 

  41. B. Zhang, Y. Duan, Y. Cui, G. Ma, T. Wang, X. Dong, A new mechanism for improving electromagnetic properties based on tunable crystallographic structures of FeCoNiSixAl0.4 high entropy alloy powders. RSC Adv. 8(27), 14936–14946 (2018)

    Article  CAS  Google Scholar 

  42. Y. Zhang, Z. Wang, B. Zhang, C. Zhou, G.-L. Zhao, J. Jiang et al., Morphology and electromagnetic interference shielding effects of SiC coated carbon short fibers. J. Mater. Chem. C 3(37), 9684–9694 (2015)

    Article  CAS  Google Scholar 

  43. S. Wen, Y. Liu, X. Zhao, J. Cheng, H. Li, Facile synthesis of novel cobalt particles by reduction method and their microwave absorption properties. Powder Technol. 264, 128–132 (2014)

    Article  CAS  Google Scholar 

  44. Y. Duan, S. Gu, Z. Zhang, M. Wen, Characterization of structures and novel magnetic response of Fe87.5Si7Al5.5 alloy processed by ball milling. J. Alloys Compd. 542, 90–96 (2012)

    Article  CAS  Google Scholar 

  45. C. Wang, X. Han, X. Zhang, S. Hu, T. Zhang, J. Wang et al., Controlled synthesis and morphology-dependent electromagnetic properties of hierarchical cobalt assemblies. J. Phys. Chem. C 114(35), 14826–14830 (2010)

    Article  CAS  Google Scholar 

  46. J. Yang, J. Zhang, C. Liang, M. Wang, P. Zhao, M. Liu et al., Ultrathin BaTiO3 nanowires with high aspect ratio: a simple one-step hydrothermal synthesis and their strong microwave absorption. ACS Appl. Mater. Interfaces. 5(15), 7146–7151 (2013)

    Article  CAS  Google Scholar 

  47. B. Zhao, G. Shao, B. Fan, W. Zhao, R. Zhang, Preparation and electromagnetic wave absorption properties of novel dendrite-like NiCu alloy composite. RSC Adv. 5(53), 42587–42590 (2015)

    Article  CAS  Google Scholar 

  48. G. Zhu, Y. Liu, J. Ye, Early high-temperature oxidation behavior of Ti(C, N)-based cermets with multi-component AlCoCrFeNi high-entropy alloy binder. Int. J. Refract. Met. Hard Mater. 44, 35–41 (2014)

    Article  CAS  Google Scholar 

  49. M. Zhang, Z. Jiang, X. Lv, X. Zhang, Y. Zhang, J. Zhang et al., Microwave absorption performance of reduced graphene oxide with negative imaginary permeability. J. Phys. D-Appl. Phys. 53(2), 02LT01 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Support by Program for the National Natural Science Foundation of China (Nos. 52071053, U1704253), the National Key R&D Program of China (2017YFB0703103), and the Fundamental Research Funds for the Central Universities (DUT20GF111).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuping Duan or Tongmin Wang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 455 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Gao, M., Pang, H. et al. FeCoNiMnAl high-entropy alloy: Improving electromagnetic wave absorption properties. Journal of Materials Research 36, 2107–2117 (2021). https://doi.org/10.1557/s43578-021-00242-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00242-1

Keywords

Navigation