Skip to main content
Log in

Structures and energies of Σ3 asymmetric tilt grain boundaries in silicon

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We optimize 23 silicon Σ3 asymmetric tilt grain boundaries (ATGBs) using Stillinger Weber (SW), Tersoff and the optimized Modified Embedded Atom Method (MEAM) potentials. It is demonstrated that conventional GB optimization via rigid body translations in combination with atom deletions is totally incapable of driving an as-constructed flat Si grain boundary (GB) to its equilibrated state since it may inevitably cause lattice distortions in GB. But it can be easily achieved by initially introducing some pre-designed steps into as-constructed flat GB model. These steps are composed of coherent twin boundary (CTB) and symmetric incoherent twin boundary (SITB) facets. By doing so, energies of all 23 ATGBs are greatly reduced. Meanwhile, some ATGBs may have degenerate states with different structures but same energies. This work not only facilitates the structural characterization of Si Σ3 ATGBs, but may provide new insights into microstructure design in polycrystalline silicon.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. G. Stokkan, Twinning in multicrystalline silicon for solar cells. J. Cryst. Growth 384, 107 (2013)

    Article  CAS  Google Scholar 

  2. Z. Wang, J.E. Alaniz, W. Jang, J.E. Garay, C. Dames, Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths. Nano Lett. 11(6), 2206 (2011)

    Article  CAS  Google Scholar 

  3. S. Bringuier, V.R. Manga, K. Runge, P. Deymier, K. Muralidharan, An atomic scale characterization of coupled grain boundary motion in silicon bicrystals. Philos. Mag. 95(36), 4118 (2015)

    Article  CAS  Google Scholar 

  4. K. Sugio, H. Fukushima, O. Yanagisawa, Molecular dynamics simulation of grain boundary formation and migration in silicon. Mater. Trans. 47(11), 2711 (2006)

    Article  CAS  Google Scholar 

  5. X. Zou, L. Jin, L. Yan, Y. Zhang, D. Ai, C. Zhao, F. Xu, C. Li, Z. Huo, The influence of grain boundary interface traps on electrical characteristics of top select gate transistor in 3D NAND flash memory. Solid-State Electron. 153, 67 (2019)

    Article  CAS  Google Scholar 

  6. Z. Wang, S. Tsurekawa, K. Ikeda, T. Sekiguchi, T. Watanabe, Relationship between electrical activity and grain boundary structural configuration in polycrystalline silicon. Interface Sci. 7(2), 197 (1999)

    Article  CAS  Google Scholar 

  7. J. Chen, T. Sekiguchi, D. Yang, F. Yin, K. Kido, S. Tsurekawa, Electron-beam-induced current study of grain boundaries in multicrystalline silicon. J. Appl. Phys. 96(10), 5490 (2004)

    Article  CAS  Google Scholar 

  8. J. Chen, T. Sekiguchi, R. Xie, P. Ahmet, T. Chikyo, D. Yang, S. Ito, F. Yin, Electron-beam-induced current study of small-angle grain boundaries in multicrystalline silicon. Scripta Mater. 52(12), 1211 (2005)

    Article  CAS  Google Scholar 

  9. J. Chen, T. Sekiguchi, Carrier recombination activity and structural properties of small-angle grain boundaries in multicrystalline silicon. Jpn. J. Appl. Phys. 46(10A), 6489 (2007)

    Article  CAS  Google Scholar 

  10. A. Maiti, M.F. Chisholm, S.J. Pennycook, S.T. Pantelides, Dopant segregation at semiconductor grain boundaries through cooperative chemical rebonding. Phys. Rev. Lett. 77(7), 1306 (1996)

    Article  CAS  Google Scholar 

  11. A. Stoffers, O. Cojocaru-Mirédin, W. Seifert, S. Zaefferer, S. Riepe, D. Raabe, Grain boundary segregation in multicrystalline silicon: correlative characterization by EBSD, EBIC, and atom probe tomography. Prog Photovolt. 23(12), 1742 (2015)

    Article  CAS  Google Scholar 

  12. S. Joonwichien, S. Matsushima, N. Usami, Effects of crystal defects and their interactions with impurities on electrical properties of multicrystalline Si. J. Appl. Phys. 113(13), 133503 (2013)

    Article  CAS  Google Scholar 

  13. I. Takahashi, N. Usami, H. Mizuseki, Y. Kawazoe, G. Stokkan, K. Nakajima, Impact of type of crystal defects in multicrystalline Si on electrical properties and interaction with impurities. J. Appl. Phys. 109(3), 033504 (2011)

    Article  CAS  Google Scholar 

  14. O.V. Feklisova, X. Yu, D. Yang, E.B. Yakimov, Effect of metal contamination on recombination properties of extended defects in multicrystalline Si. Phys. Status Solidi C 9(10–11), 1942 (2012)

    Article  CAS  Google Scholar 

  15. S. Ambigapathy, V. Natarajan Sathiyamoorthy, S. Ryoji, M. Hiroshi, K. Yoshiyuki, First-principles calculations on Σ3 grain boundary transition metal impurities in multicrystalline silicon. Jpn. J. Appl. Phys. 49(4S), 04DP02 (2010)

    Article  Google Scholar 

  16. J.L. Putaux, J. Thibault-Dessaux, HREM characterization of structural changes in a deformed Σ9 (122) grain boundary in silicon. Colloq. Phys. C1, 323 (1990)

    Google Scholar 

  17. J. Thibault, J.L. Putaux, A. Jacques, A. George, H.M. Michaud, X. Baillin, Structure and characterization of the dislocations in tilt grain boundaries between Σ=1 and Σ=3: a high resolution electron microscopy study. Mater. Sci. Eng. A 164(1), 93 (1993)

    Article  Google Scholar 

  18. M. Elkajbaji, Structural transformation of the (233)\[011], Σ11 tilt grain boundaries in germanium and silicon. Philos. Mag. Lett. 73(1), 5 (1996)

    Article  CAS  Google Scholar 

  19. N. Sakaguchi, H. Ichinose, S. Watanabe, Atomic structure of faceted Σ3 CSL grain boundary in silicon: HRTEM and ab-initio calculation. Mater. Trans. 48(10), 2585 (2007)

    Article  CAS  Google Scholar 

  20. M.G. Tsoutsouva, G. Stokkan, G. Regula, B. Ryningen, T. Riberi-Béridot, G. Reinhart, N. Mangelinck-Noël, Random angle grain boundary formation and evolution dynamics during Si directional solidification. Acta Mater. 171, 253 (2019)

    Article  CAS  Google Scholar 

  21. M.G. Tsoutsouva, P.E. Vullum, K. Adamczyk, M. Di Sabatino, G. Stokkan, Interfacial atomic structure and electrical activity of nano-facetted CSL grain boundaries in high-performance multi-crystalline silicon. J. Appl. Phys. 127(12), 125109 (2020)

    Article  CAS  Google Scholar 

  22. V.A. Oliveira, B. Marie, C. Cayron, M. Marinova, M.G. Tsoutsouva, H.C. Sio, T.A. Lafford, J. Baruchel, G. Audoit, A. Grenier, T.N. Tran Thi, D. Camel, Formation mechanism and properties of twinned structures in (111) seeded directionally solidified solar grade silicon. Acta Mater. 121, 24 (2016)

    Article  CAS  Google Scholar 

  23. H.J. Möller, 〈011〉 tilt boundaries in the diamond cubic lattice. Philos. Mag. A 43(4), 1045 (1981)

    Article  Google Scholar 

  24. R.E. Thomson, D.J. Chadi, Theoretical study of the electronic structure of a high-angle tilt grain boundary in Si. Phys. Rev. B 29(2), 889 (1984)

    Article  CAS  Google Scholar 

  25. M. Kohyama, R. Yamamoto, Y. Ebata, M. Kinoshita, The atomic and electronic structure of a (001) tilt grain boundary in Si. J. Phys. C Solid State Phys. 21(17), 3205 (1988)

    Article  CAS  Google Scholar 

  26. J.R. Morris, C.L. Fu, K.M. Ho, Tight-binding study of tilt grain boundaries in diamond. Phys. Rev. B 54(1), 132 (1996)

    Article  CAS  Google Scholar 

  27. S.V. Alfthan, K. Kaski, A.P. Sutton, Order and structural units in simulations of twist grain boundaries in silicon at absolute zero. Phys. Rev. B 74(13), 134101 (2006)

    Article  CAS  Google Scholar 

  28. M. Kohyama, R. Yamamoto, M. Doyama, Structures and energies of symmetrical 〈011〉 tilt grain boundaries in silicon. Phys. status solidi (b) 137(1), 11 (1986)

    Article  CAS  Google Scholar 

  29. M. Kohyama, R. Yamamoto, M. Doyama, Reconstructed structures of symmetrical 〈011〉 tilt grain boundaries in silicon. Phys. status solidi (b) 138(2), 387 (1986)

    Article  CAS  Google Scholar 

  30. D.P. DiVincenzo, O.L. Alerhand, M. Schlüter, J.W. Wilkins, Electronic and structural properties of a twin boundary in Si. Phys. Rev. Lett. 56(18), 1925 (1986)

    Article  CAS  Google Scholar 

  31. W.L. Huang, W. Ge, C.X. Li, C.F. Hou, X.W. Wang, X.F. He, Atomic and electronic structures of Si 001 (130) symmetric tilt grain boundaries based on first-principles calculations. Comp. Mater. Sci. 58, 38 (2012)

    Article  CAS  Google Scholar 

  32. D. Zhao, Y. Li, Carbon segregation at Σ3 1 1 2 grain boundaries in silicon. Comp. Mater. Sci. 143, 80 (2018)

    Article  CAS  Google Scholar 

  33. V.Y. Lazebnykh, A.S. Mysovsky, Ab initio and atomistic simulation of local structure and defect segregation on the tilt grain boundaries in silicon. J. Appl. Phys. 118(13), 135704 (2015)

    Article  CAS  Google Scholar 

  34. A.P. Sutton, V. Vitek, On the structure of tilt grain boundaries in cubic metals I Symmetrical tilt boundaries. Philos. Trans. R. Soc. Lond. Ser. Math. Phys. 309(1506), 1 (1983)

    Article  CAS  Google Scholar 

  35. A.A. Levi, D.A. Smith, J.T. Wetzel, Calculated structures for [001] symmetrical tilt grain boundaries in silicon. J. Appl. Phys. 69(4), 2048 (1991)

    Article  CAS  Google Scholar 

  36. J. Zhang, C. Wang, K. Ho, Finding the low-energy structures of Si[001] symmetric tilted grain boundaries with a genetic algorithm. Phys. Rev. B 80(17), 174102 (2009)

    Article  CAS  Google Scholar 

  37. A. Stoffers, B. Ziebarth, J. Barthel, O. Cojocaru-Miredin, C. Elsasser, D. Raabe, Complex nanotwin substructure of an asymmetric Sigma9 tilt grain boundary in a silicon polycrystal. Phys. Rev. Lett. 115(23), 235502 (2015)

    Article  CAS  Google Scholar 

  38. F.H. Stillinger, T.A. Weber, Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31(8), 5262 (1985)

    Article  CAS  Google Scholar 

  39. J. Tersoff, New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37(12), 6991 (1988)

    Article  CAS  Google Scholar 

  40. R. Raghunathan, E. Johlin, J.C. Grossman, Grain boundary engineering for improved thin silicon photovoltaics. Nano lett. 14(9), 4943 (2014)

    Article  CAS  Google Scholar 

  41. L. Wang, W. Yu, S. Shen, Revisiting the structures and energies of silicon 〈110〉 symmetric tilt grain boundaries. J. Mater. Res. 34(6), 1021 (2019)

    Article  CAS  Google Scholar 

  42. M. Timonova, B.J. Thijsse, Optimizing the MEAM potential for silicon. Model. Simul. Mater. Sci. Eng. 19(1), 015003 (2011)

    Article  CAS  Google Scholar 

  43. H.K. Lin, C.W. Lan, Revisiting the twinning mechanism in directional solidification of multi-crystalline silicon sheet. Acta Mater. 131, 1 (2017)

    Article  CAS  Google Scholar 

  44. C.B. Feng, J.L. Nie, X.T. Zu, M.M. Al-Jassim, Y. Yan, Structure and effects of vacancies in Σ3 (112) grain boundaries in Si. J. Appl. Phys. 106(11), 113506 (2009)

    Article  CAS  Google Scholar 

  45. H. Sawada, H. Ichinose, Structure of 112 Σ3 boundary in silicon and diamond. Scripta Mater. 44(8–9), 2327 (2001)

    Article  CAS  Google Scholar 

  46. M.A. Tschopp, D.L. McDowell, Structures and energies of Σ3 asymmetric tilt grain boundaries in copper and aluminium. Philos. Mag. 87(22), 3147 (2007)

    Article  CAS  Google Scholar 

  47. Y.G. Zhang, H. Ichinose, M. Nakanose, K. Ito, Y. Ishida, Structure modelling of Σ3 and Σ9 coincident boundaries in CVD diamond thin films. J. Electron Microsc. 48(3), 245 (1999)

    Article  CAS  Google Scholar 

  48. K. Masanori, Computational studies of grain boundaries in covalent materials. Model. Simul. Mater. Sci. Eng. 10(3), R31 (2002)

    Article  Google Scholar 

  49. H. Sawada, H. Ichinose, M. Kohyama, Gap states due to stretched bonds at the (112) Σ3 boundary in diamond. J. Phys. Condens. Matter 19(2), 026223 (2007)

    Article  CAS  Google Scholar 

  50. A. Stoffers, B. Ziebarth, J. Barthel, O. Cojocaru-Mirédin, C. Elsässer, D. Raabe, Complex nanotwin substructure of an asymmetric Σ9 tilt grain boundary in a silicon polycrystal. Phys. Rev. Lett. 115(23), 235502 (2015)

    Article  CAS  Google Scholar 

  51. A.D. Banadaki, S. Patala, A simple faceting model for the interfacial and cleavage energies of Σ3 grain boundaries in the complete boundary plane orientation space. Comp. Mater. Sci. 112, 147 (2016)

    Article  CAS  Google Scholar 

  52. W.S. Yu, M.J. Demkowicz, Non-coherent Cu grain boundaries driven by continuous vacancy loading. J. Mater. Sci. 50(11), 4047 (2015)

    Article  CAS  Google Scholar 

  53. T. Frolov, D.L. Olmsted, M. Asta, Y. Mishin, Structural phase transformations in metallic grain boundaries. Nat. commun. 4, 1899 (2013)

    Article  CAS  Google Scholar 

  54. S. Von Alfthan, P.D. Haynes, K. Kaski, A.P. Sutton, Are the structures of twist grain boundaries in silicon ordered at 0 K? Phys. Rev. Lett. 96(5), 055505 (2006)

    Article  CAS  Google Scholar 

  55. M. Guziewski, A.D. Banadaki, S. Patala, S.P. Coleman, Application of Monte Carlo techniques to grain boundary structure optimization in silicon and silicon-carbide. Comp. Mater. Sci. 182, 109771 (2020)

    Article  CAS  Google Scholar 

  56. J.A. Brown, Y. Mishin, Dissociation and faceting of asymmetrical tilt grain boundaries: molecular dynamics simulations of copper. Phys. Rev. B 76(13), 134118 (2007)

    Article  CAS  Google Scholar 

  57. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117(1), 1 (1995)

    Article  CAS  Google Scholar 

  58. S. Alexander, Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool. Model. Simul. Mater. Sci. Eng. 18(1), 015012 (2010)

    Article  Google Scholar 

  59. D.P. Bertsekas, Nonlinear Programming, 3rd edn. (Athena Scientific, Cambridge, 2016).

    Google Scholar 

Download references

Acknowledgments

W.S.Y. acknowledges the support of NSFC (Grant Nos.: 11872049 and 11502191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenshan Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

43578_2021_240_MOESM1_ESM.docx

Supplementary file1 See supplementary material for (1) crystalline orientations all 23 ATGBs, (2) two stepwise GB model and (3) structures of 23 ATGBs optimized using stepwise GB model. (DOCX 12597 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Dang, R., Jin, L. et al. Structures and energies of Σ3 asymmetric tilt grain boundaries in silicon. Journal of Materials Research 36, 2025–2036 (2021). https://doi.org/10.1557/s43578-021-00240-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00240-3

Keywords

Navigation