Abstract
We optimize 23 silicon Σ3 asymmetric tilt grain boundaries (ATGBs) using Stillinger Weber (SW), Tersoff and the optimized Modified Embedded Atom Method (MEAM) potentials. It is demonstrated that conventional GB optimization via rigid body translations in combination with atom deletions is totally incapable of driving an as-constructed flat Si grain boundary (GB) to its equilibrated state since it may inevitably cause lattice distortions in GB. But it can be easily achieved by initially introducing some pre-designed steps into as-constructed flat GB model. These steps are composed of coherent twin boundary (CTB) and symmetric incoherent twin boundary (SITB) facets. By doing so, energies of all 23 ATGBs are greatly reduced. Meanwhile, some ATGBs may have degenerate states with different structures but same energies. This work not only facilitates the structural characterization of Si Σ3 ATGBs, but may provide new insights into microstructure design in polycrystalline silicon.
Graphic Abstract
Similar content being viewed by others
References
G. Stokkan, Twinning in multicrystalline silicon for solar cells. J. Cryst. Growth 384, 107 (2013)
Z. Wang, J.E. Alaniz, W. Jang, J.E. Garay, C. Dames, Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths. Nano Lett. 11(6), 2206 (2011)
S. Bringuier, V.R. Manga, K. Runge, P. Deymier, K. Muralidharan, An atomic scale characterization of coupled grain boundary motion in silicon bicrystals. Philos. Mag. 95(36), 4118 (2015)
K. Sugio, H. Fukushima, O. Yanagisawa, Molecular dynamics simulation of grain boundary formation and migration in silicon. Mater. Trans. 47(11), 2711 (2006)
X. Zou, L. Jin, L. Yan, Y. Zhang, D. Ai, C. Zhao, F. Xu, C. Li, Z. Huo, The influence of grain boundary interface traps on electrical characteristics of top select gate transistor in 3D NAND flash memory. Solid-State Electron. 153, 67 (2019)
Z. Wang, S. Tsurekawa, K. Ikeda, T. Sekiguchi, T. Watanabe, Relationship between electrical activity and grain boundary structural configuration in polycrystalline silicon. Interface Sci. 7(2), 197 (1999)
J. Chen, T. Sekiguchi, D. Yang, F. Yin, K. Kido, S. Tsurekawa, Electron-beam-induced current study of grain boundaries in multicrystalline silicon. J. Appl. Phys. 96(10), 5490 (2004)
J. Chen, T. Sekiguchi, R. Xie, P. Ahmet, T. Chikyo, D. Yang, S. Ito, F. Yin, Electron-beam-induced current study of small-angle grain boundaries in multicrystalline silicon. Scripta Mater. 52(12), 1211 (2005)
J. Chen, T. Sekiguchi, Carrier recombination activity and structural properties of small-angle grain boundaries in multicrystalline silicon. Jpn. J. Appl. Phys. 46(10A), 6489 (2007)
A. Maiti, M.F. Chisholm, S.J. Pennycook, S.T. Pantelides, Dopant segregation at semiconductor grain boundaries through cooperative chemical rebonding. Phys. Rev. Lett. 77(7), 1306 (1996)
A. Stoffers, O. Cojocaru-Mirédin, W. Seifert, S. Zaefferer, S. Riepe, D. Raabe, Grain boundary segregation in multicrystalline silicon: correlative characterization by EBSD, EBIC, and atom probe tomography. Prog Photovolt. 23(12), 1742 (2015)
S. Joonwichien, S. Matsushima, N. Usami, Effects of crystal defects and their interactions with impurities on electrical properties of multicrystalline Si. J. Appl. Phys. 113(13), 133503 (2013)
I. Takahashi, N. Usami, H. Mizuseki, Y. Kawazoe, G. Stokkan, K. Nakajima, Impact of type of crystal defects in multicrystalline Si on electrical properties and interaction with impurities. J. Appl. Phys. 109(3), 033504 (2011)
O.V. Feklisova, X. Yu, D. Yang, E.B. Yakimov, Effect of metal contamination on recombination properties of extended defects in multicrystalline Si. Phys. Status Solidi C 9(10–11), 1942 (2012)
S. Ambigapathy, V. Natarajan Sathiyamoorthy, S. Ryoji, M. Hiroshi, K. Yoshiyuki, First-principles calculations on Σ3 grain boundary transition metal impurities in multicrystalline silicon. Jpn. J. Appl. Phys. 49(4S), 04DP02 (2010)
J.L. Putaux, J. Thibault-Dessaux, HREM characterization of structural changes in a deformed Σ9 (122) grain boundary in silicon. Colloq. Phys. C1, 323 (1990)
J. Thibault, J.L. Putaux, A. Jacques, A. George, H.M. Michaud, X. Baillin, Structure and characterization of the dislocations in tilt grain boundaries between Σ=1 and Σ=3: a high resolution electron microscopy study. Mater. Sci. Eng. A 164(1), 93 (1993)
M. Elkajbaji, Structural transformation of the (233)\[011], Σ11 tilt grain boundaries in germanium and silicon. Philos. Mag. Lett. 73(1), 5 (1996)
N. Sakaguchi, H. Ichinose, S. Watanabe, Atomic structure of faceted Σ3 CSL grain boundary in silicon: HRTEM and ab-initio calculation. Mater. Trans. 48(10), 2585 (2007)
M.G. Tsoutsouva, G. Stokkan, G. Regula, B. Ryningen, T. Riberi-Béridot, G. Reinhart, N. Mangelinck-Noël, Random angle grain boundary formation and evolution dynamics during Si directional solidification. Acta Mater. 171, 253 (2019)
M.G. Tsoutsouva, P.E. Vullum, K. Adamczyk, M. Di Sabatino, G. Stokkan, Interfacial atomic structure and electrical activity of nano-facetted CSL grain boundaries in high-performance multi-crystalline silicon. J. Appl. Phys. 127(12), 125109 (2020)
V.A. Oliveira, B. Marie, C. Cayron, M. Marinova, M.G. Tsoutsouva, H.C. Sio, T.A. Lafford, J. Baruchel, G. Audoit, A. Grenier, T.N. Tran Thi, D. Camel, Formation mechanism and properties of twinned structures in (111) seeded directionally solidified solar grade silicon. Acta Mater. 121, 24 (2016)
H.J. Möller, 〈011〉 tilt boundaries in the diamond cubic lattice. Philos. Mag. A 43(4), 1045 (1981)
R.E. Thomson, D.J. Chadi, Theoretical study of the electronic structure of a high-angle tilt grain boundary in Si. Phys. Rev. B 29(2), 889 (1984)
M. Kohyama, R. Yamamoto, Y. Ebata, M. Kinoshita, The atomic and electronic structure of a (001) tilt grain boundary in Si. J. Phys. C Solid State Phys. 21(17), 3205 (1988)
J.R. Morris, C.L. Fu, K.M. Ho, Tight-binding study of tilt grain boundaries in diamond. Phys. Rev. B 54(1), 132 (1996)
S.V. Alfthan, K. Kaski, A.P. Sutton, Order and structural units in simulations of twist grain boundaries in silicon at absolute zero. Phys. Rev. B 74(13), 134101 (2006)
M. Kohyama, R. Yamamoto, M. Doyama, Structures and energies of symmetrical 〈011〉 tilt grain boundaries in silicon. Phys. status solidi (b) 137(1), 11 (1986)
M. Kohyama, R. Yamamoto, M. Doyama, Reconstructed structures of symmetrical 〈011〉 tilt grain boundaries in silicon. Phys. status solidi (b) 138(2), 387 (1986)
D.P. DiVincenzo, O.L. Alerhand, M. Schlüter, J.W. Wilkins, Electronic and structural properties of a twin boundary in Si. Phys. Rev. Lett. 56(18), 1925 (1986)
W.L. Huang, W. Ge, C.X. Li, C.F. Hou, X.W. Wang, X.F. He, Atomic and electronic structures of Si 001 (130) symmetric tilt grain boundaries based on first-principles calculations. Comp. Mater. Sci. 58, 38 (2012)
D. Zhao, Y. Li, Carbon segregation at Σ3 1 1 2 grain boundaries in silicon. Comp. Mater. Sci. 143, 80 (2018)
V.Y. Lazebnykh, A.S. Mysovsky, Ab initio and atomistic simulation of local structure and defect segregation on the tilt grain boundaries in silicon. J. Appl. Phys. 118(13), 135704 (2015)
A.P. Sutton, V. Vitek, On the structure of tilt grain boundaries in cubic metals I Symmetrical tilt boundaries. Philos. Trans. R. Soc. Lond. Ser. Math. Phys. 309(1506), 1 (1983)
A.A. Levi, D.A. Smith, J.T. Wetzel, Calculated structures for [001] symmetrical tilt grain boundaries in silicon. J. Appl. Phys. 69(4), 2048 (1991)
J. Zhang, C. Wang, K. Ho, Finding the low-energy structures of Si[001] symmetric tilted grain boundaries with a genetic algorithm. Phys. Rev. B 80(17), 174102 (2009)
A. Stoffers, B. Ziebarth, J. Barthel, O. Cojocaru-Miredin, C. Elsasser, D. Raabe, Complex nanotwin substructure of an asymmetric Sigma9 tilt grain boundary in a silicon polycrystal. Phys. Rev. Lett. 115(23), 235502 (2015)
F.H. Stillinger, T.A. Weber, Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31(8), 5262 (1985)
J. Tersoff, New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37(12), 6991 (1988)
R. Raghunathan, E. Johlin, J.C. Grossman, Grain boundary engineering for improved thin silicon photovoltaics. Nano lett. 14(9), 4943 (2014)
L. Wang, W. Yu, S. Shen, Revisiting the structures and energies of silicon 〈110〉 symmetric tilt grain boundaries. J. Mater. Res. 34(6), 1021 (2019)
M. Timonova, B.J. Thijsse, Optimizing the MEAM potential for silicon. Model. Simul. Mater. Sci. Eng. 19(1), 015003 (2011)
H.K. Lin, C.W. Lan, Revisiting the twinning mechanism in directional solidification of multi-crystalline silicon sheet. Acta Mater. 131, 1 (2017)
C.B. Feng, J.L. Nie, X.T. Zu, M.M. Al-Jassim, Y. Yan, Structure and effects of vacancies in Σ3 (112) grain boundaries in Si. J. Appl. Phys. 106(11), 113506 (2009)
H. Sawada, H. Ichinose, Structure of 112 Σ3 boundary in silicon and diamond. Scripta Mater. 44(8–9), 2327 (2001)
M.A. Tschopp, D.L. McDowell, Structures and energies of Σ3 asymmetric tilt grain boundaries in copper and aluminium. Philos. Mag. 87(22), 3147 (2007)
Y.G. Zhang, H. Ichinose, M. Nakanose, K. Ito, Y. Ishida, Structure modelling of Σ3 and Σ9 coincident boundaries in CVD diamond thin films. J. Electron Microsc. 48(3), 245 (1999)
K. Masanori, Computational studies of grain boundaries in covalent materials. Model. Simul. Mater. Sci. Eng. 10(3), R31 (2002)
H. Sawada, H. Ichinose, M. Kohyama, Gap states due to stretched bonds at the (112) Σ3 boundary in diamond. J. Phys. Condens. Matter 19(2), 026223 (2007)
A. Stoffers, B. Ziebarth, J. Barthel, O. Cojocaru-Mirédin, C. Elsässer, D. Raabe, Complex nanotwin substructure of an asymmetric Σ9 tilt grain boundary in a silicon polycrystal. Phys. Rev. Lett. 115(23), 235502 (2015)
A.D. Banadaki, S. Patala, A simple faceting model for the interfacial and cleavage energies of Σ3 grain boundaries in the complete boundary plane orientation space. Comp. Mater. Sci. 112, 147 (2016)
W.S. Yu, M.J. Demkowicz, Non-coherent Cu grain boundaries driven by continuous vacancy loading. J. Mater. Sci. 50(11), 4047 (2015)
T. Frolov, D.L. Olmsted, M. Asta, Y. Mishin, Structural phase transformations in metallic grain boundaries. Nat. commun. 4, 1899 (2013)
S. Von Alfthan, P.D. Haynes, K. Kaski, A.P. Sutton, Are the structures of twist grain boundaries in silicon ordered at 0 K? Phys. Rev. Lett. 96(5), 055505 (2006)
M. Guziewski, A.D. Banadaki, S. Patala, S.P. Coleman, Application of Monte Carlo techniques to grain boundary structure optimization in silicon and silicon-carbide. Comp. Mater. Sci. 182, 109771 (2020)
J.A. Brown, Y. Mishin, Dissociation and faceting of asymmetrical tilt grain boundaries: molecular dynamics simulations of copper. Phys. Rev. B 76(13), 134118 (2007)
S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117(1), 1 (1995)
S. Alexander, Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool. Model. Simul. Mater. Sci. Eng. 18(1), 015012 (2010)
D.P. Bertsekas, Nonlinear Programming, 3rd edn. (Athena Scientific, Cambridge, 2016).
Acknowledgments
W.S.Y. acknowledges the support of NSFC (Grant Nos.: 11872049 and 11502191).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Supplementary Information
Below is the link to the electronic supplementary material.
43578_2021_240_MOESM1_ESM.docx
Supplementary file1 See supplementary material for (1) crystalline orientations all 23 ATGBs, (2) two stepwise GB model and (3) structures of 23 ATGBs optimized using stepwise GB model. (DOCX 12597 kb)
Rights and permissions
About this article
Cite this article
Zhao, M., Dang, R., Jin, L. et al. Structures and energies of Σ3 asymmetric tilt grain boundaries in silicon. Journal of Materials Research 36, 2025–2036 (2021). https://doi.org/10.1557/s43578-021-00240-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/s43578-021-00240-3