Skip to main content
Log in

On the curing kinetics of epoxy/PLA compounds

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Non-isothermal curing kinetics of DGEBA/PLA/MTHPA compounds was modeled using Ozawa, Kissinger, Friedman autocatalytic, Friedman and Málek models, whose parameters and associate deviation are reported. Ozawa and Kissinger consider global Ea over the whole conversion, estimated as 65.0 kJ/mol with R2 0.8393 and 87.60; these low R2 are due to the several stages during curing with distinct energy needs which most likely conducted to the discrepancies that should not be ignored; nevertheless, the average Ea might be adopted for the curing understanding, whereas adding PLA subtly increases Ea. Málek’s model adequately described the kinetics processes as also did isoconversional and autocatalytic Friedman models which presented R2 > 0.99. PLA’s molecular chains behaved as curing impediments, and during its progress, it is hypothesized that they increase the system’s swollen coils and eventually an interconnected structure that percolates the system results in (macro) gelation instead cross-linking; additionally, hydrogen bonds between PLA–DGEBA promote competitive reactions during reticulation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. M.R. Saeb et al., Biowaste chicken eggshell powder as a potential cure modifier for epoxy/anhydride systems: competitiveness with terpolymer-modified calcium carbonate at low loading levels. RSC Adv. 7, 2218–2230 (2017)

    Article  CAS  Google Scholar 

  2. S. Kumar, S.K. Samal, S. Mohanty, S.K. Nayak, Curing kinetics of bio-based epoxy resin-toughened DGEBA epoxy resin blend. J. Therm. Anal. Calorim. 137, 1567–1578 (2019)

    Article  CAS  Google Scholar 

  3. S. Kumar, S.K. Samal, S. Mohanty, S.K. Nayak, Recent development of biobased epoxy resins: a review. Polym.-Plast. Technol. Eng. 57, 133–155 (2018)

    Article  CAS  Google Scholar 

  4. B. Ellis, Chemistry and Technology of Epoxy Resins (Springer, New York, 1993).

    Book  Google Scholar 

  5. F.-L. Jin, X. Li, S.-J. Park, Synthesis and application of epoxy resins: a review. J. Ind. Eng. Chem. 29, 1–11 (2015)

    Article  CAS  Google Scholar 

  6. V. Zvetkov, S. Djoumaliisky, E. Simeonova-Ivanova, The non-isothermal DSC kinetics of polyethylene tereftalate–epoxy compatible blends. Thermochim. Acta 553, 16–22 (2013)

    Article  CAS  Google Scholar 

  7. X. Fernández-Francos, A. Rybak, R. Sekula, X. Ramis, A. Serra, Modification of epoxy–anhydride thermosets using a hyperbranched poly (ester-amide): I. Kinetic study. Polym. Int. 61, 1710–1725 (2012)

    Article  Google Scholar 

  8. S. Montserrat, X. Pla, Use of temperature-modulated DSC in kinetic analysis of a catalysed epoxy–anhydride system. Polym. Int. 53, 326–331 (2004)

    Article  CAS  Google Scholar 

  9. S. Montserrat, C. Flaque, M. Calafell, G. Andreu, J. Malek, Influence of the accelerator concentration on the curing reaction of an epoxy-anhydride system. Thermochim. Acta 269, 213–229 (1995)

    Article  Google Scholar 

  10. S. Montserrat, J. Málek, A kinetic analysis of the curing reaction of an epoxy resin. Thermochim. Acta 228, 47–60 (1993)

    Article  CAS  Google Scholar 

  11. Q. Xie et al., Structure, microparameters and properties of crosslinked DGEBA/MTHPA: a molecular dynamics simulation. AIP Adv. 8, 075332 (2018)

    Article  Google Scholar 

  12. X. Yang et al., Molecular dynamics studies of the mechanical behaviors and thermal conductivity of the DGEBA/MTHPA/CNB composites. Composites B 164, 659–666 (2019)

    Article  CAS  Google Scholar 

  13. Y. Cheng, S. Deng, P. Chen, R. Ruan, Polylactic acid (PLA) synthesis and modifications: a review. Front. Chem. China 4, 259–264 (2009)

    Article  Google Scholar 

  14. X. Luo et al., A thermoplastic/thermoset blend exhibiting thermal mending and reversible adhesion. ACS Appl. Mater. Interfaces. 1, 612–620 (2009)

    Article  CAS  Google Scholar 

  15. M. Abbate, E. Martuscelli, P. Musto, G. Ragosta, G. Scarinzi, Toughening of a highly cross-linked epoxy resin by reactive blending with bisphenol A polycarbonate. I. FTIR spectroscopy. J. Polym. Sci. Part B 32, 395–408 (1994)

    Article  CAS  Google Scholar 

  16. K.A. Thakur, R.T. Kean, E.S. Hall, J.J. Kolstad, E.J. Munson, 1H NMR spectroscopy in the analysis and characterization of poly (lactide). Int. J. Polym. Anal. Charact. 4, 379–391 (1998)

    Article  CAS  Google Scholar 

  17. I. Silva et al., Insights into the curing kinetics of epoxy/PLA: implications of the networking structure. Express Polym. Lett. 14, 1180–1196 (2020)

    Article  CAS  Google Scholar 

  18. C. Acebo Gorostiza et al., Epoxy/anhydride thermosets modified with end-capped star polymers with poly (ethyleneimine) cores of different molecular weight and poly (epsilon-caprolactone) arms. Express Polym. Lett. 9, 809–823 (2015)

    Article  Google Scholar 

  19. K.C. Cole, A new approach to modeling the cure kinetics of epoxy/amine thermosetting resins. 1. Mathematical development. Macromolecules 24, 3093–3097 (1991)

    Article  CAS  Google Scholar 

  20. J. Mijovic, A. Fishbain, J. Wijaya, Mechanistic modeling of epoxy-amine kinetics. 1. Model compound study. Macromolecules 25, 979–985 (1992)

    Article  CAS  Google Scholar 

  21. P. Šimon, Isoconversional methods. J. Therm. Anal. Calorim. 76, 123 (2004)

    Article  Google Scholar 

  22. J. Criado, P. Sánchez-Jiménez, L. Pérez-Maqueda, Critical study of the isoconversional methods of kinetic analysis. J. Therm. Anal. Calorim. 92, 199–203 (2008)

    Article  CAS  Google Scholar 

  23. Friedman, H.L. in Journal of Polymer Science Part C: Polymer Symposia. (Wiley Online Library), pp. 183–195.

  24. M. Jouyandeh et al., Cure index’ for thermoset composites. Prog. Org. Coat. 127, 429–434 (2019)

    Article  CAS  Google Scholar 

  25. E. Woo, J. Seferis, Cure kinetics of epoxy/anhydride thermosetting matrix systems. J. Appl. Polym. Sci. 40, 1237–1256 (1990)

    Article  CAS  Google Scholar 

  26. D.W. Larsen, J.H. Strange, Pulsed NMR study of molecular motion in the uncured diglycidyl ether of bisphenol-A. J. Polym. Sci. Polym. Phys. Ed. 11, 65–74 (1973)

    Article  CAS  Google Scholar 

  27. J. Zhang, L. Wang, S. Liu, Z. Li, Phosphazene/Lewis acids as highly efficient cooperative catalyst for synthesis of high-molecular-weight polyesters by ring-opening alternating copolymerization of epoxide and anhydride. J. Polym. Sci. 58, 803–810 (2020)

    Article  CAS  Google Scholar 

  28. N.G. Jaques et al., Kinetic investigation of eggshell powders as biobased epoxy catalyzer. Compos. B 183, 107651 (2020)

    Article  CAS  Google Scholar 

  29. S.H. Ryu, J. Sin, A. Shanmugharaj, Study on the effect of hexamethylene diamine functionalized graphene oxide on the curing kinetics of epoxy nanocomposites. Eur. Polym. J. 52, 88–97 (2014)

    Article  CAS  Google Scholar 

  30. A. Ručigaj, B. Alič, M. Krajnc, U. Šebenik, Investigation of cure kinetics in a system with reactant evaporation: epoxidized soybean oil and maleic anhydride case study. Eur. Polym. J. 52, 105–116 (2014)

    Article  Google Scholar 

  31. B. Wu et al., Super-toughened heat-resistant poly (lactic acid) alloys by tailoring the phase morphology and the crystallization behaviors. J. Polym. Sci. 58, 500–509 (2020)

    Article  CAS  Google Scholar 

  32. H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702–1706 (1957)

    Article  CAS  Google Scholar 

  33. T. Ozawa, A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 38, 1881–1886 (1965)

    Article  CAS  Google Scholar 

  34. J. Málek, The kinetic analysis of non-isothermal data. Thermochim. Acta 200, 257–269 (1992)

    Article  Google Scholar 

  35. G.I. Senum, R. Yang, Rational approximations of the integral of the Arrhenius function. J. Therm. Anal. 11, 445–447 (1977)

    Article  Google Scholar 

  36. K.A. Thakur, R.T. Kean, E.S. Hall, M.A. Doscotch, E.J. Munson, A quantitative method for determination of lactide composition in poly (lactide) using 1H NMR. Anal. Chem. 69, 4303–4309 (1997)

    Article  CAS  Google Scholar 

  37. F.G. Garcia, B.G. Soares, Determination of the epoxide equivalent weight of epoxy resins based on diglycidyl ether of bisphenol A (DGEBA) by proton nuclear magnetic resonance. Polym. Test. 22, 51–56 (2003)

    Article  Google Scholar 

  38. L. Li, Z. Zeng, H. Zou, M. Liang, Curing characteristics of an epoxy resin in the presence of functional graphite oxide with amine-rich surface. Thermochim. Acta 614, 76–84 (2015)

    Article  CAS  Google Scholar 

  39. M. Nonahal et al., Epoxy/PAMAM dendrimer-modified graphene oxide nanocomposite coatings: nonisothermal cure kinetics study. Prog. Org. Coat. 114, 233–243 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Olin Corporation (Brazil) for kindly supplying the reactants. The authors are deeply grateful for the reading and discussions from Professor Tomas Jeferson de Mélo and Professor Pankaj Agrawal. The authors thank Prof. Dr. Marcelo Sobral da Silva, Prof. Dr. Josean Fechine Tavares, coordinators of the Multi-User Characterization and Analysis Laboratory—LMCA in UFPB, and Dr. Marcelo Felipe Rodrigues da Silva for the Nuclear Magnetic Resonance—NMR spectra.

Funding

The authors would like to acknowledge the financial support from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Apoio à Pesquisa do Estado da Paraíba (FAPESQ) (Concession term: 017/2019). Professor Renate Wellen is CNPq fellow (Number: 307488/2018-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. R. Wellen.

Ethics declarations

Conflict of interest

There is no conflict of interest and all authors have agreed with this submission and they are aware of the content.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, I.D.S., Barros, J.J.P., Jaques, N.G. et al. On the curing kinetics of epoxy/PLA compounds. Journal of Materials Research 36, 2973–2986 (2021). https://doi.org/10.1557/s43578-021-00234-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00234-1

Keywords

Navigation