Skip to main content

Advertisement

Log in

Potency of a novel synthesized Ag-eugenol nanoemulsion for treating some bacterial and fungal pathogens

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The current research deals with the synthesis and validation of the novel Ag-eugenol nanoemulsion (O/W). The synthesized Ag-eugenol nanoemulsion was validated by DLS, TEM, FT-IR, UV–VIS spectral analysis; TEM reveals the particles an average size of 30 nm and SEM images confirm spherical morphology of particles. Zeta potential measurements, presented a negative average zeta potential of − 25 mV. EDX analysis showed typical absorption peaks at 0.25 keV and 3 keV that confirm the presence of AgNPs. Elemental mapping of Ag-eugenol nanoemulsion confirms the presence of silver, eugenol moiety and the AgNPs are nucleated by eugenol moiety. Eugenol, eugenol nanoemulsion (5 µg/ml), AgNPs (25 ppm) and Ag-eugenol nanoemulsion (12.5 ppm AgNPs: eugenol 2.5 µg/ml) solutions were tested for their antimicrobial potency against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Proteus vulgaris. Ag-eugenol nanoemulsion was effective against both tested fungi; A. fumigatus and C. albicans with MIC 12.5:2.5 ppm:µg/ml and 6.25:1.25 ppm:µg/ml, respectively, comparing to a negative effect of eugenol nanoemulsion.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The data and materials that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. F.M.M. Mosalam, Effect of Gamma Radiation on the Microbial Synthesis of Metal Nanoparticles (Al-Azhar University, Cairo, 2013).

    Google Scholar 

  2. S. Muthu, V. Raju, V.B. Gopal, A. Gunasekaran, K.S. Narayan, S. Malairaj, M. Lakshmikanthan, N. Duraisamy, K. Krishnan, P. Perumal, A rapid synthesis and antibacterial property of selenium nanoparticles using egg white lysozyme as a stabilizing agent. SN Appl. Sci. 1(12), 1543 (2019)

    Article  CAS  Google Scholar 

  3. P. Carter, B. Narasimhan, Q. Wang, Biocompatible nanoparticles and vesicular systems in transdermal drug delivery for various skin diseases. Int. J. Pharm. 555, 49 (2019)

    Article  CAS  Google Scholar 

  4. Z. Jurasekova, S. Sánchez-Cortés, M. Tamba, A. Torreggiani, Silver nanoparticles active as surface-enhanced Raman scattering substrates prepared by high energy irradiation. Vib. Spectrosc. 57(1), 42 (2011)

    CAS  Google Scholar 

  5. J. Vergis, P. Gokulakrishnan, R. Agarwal, A. Kumar, Essential oils as natural food antimicrobial agents: a review. Crit. Rev. Food Sci. Nutr. 55(10), 1320 (2015)

    Article  CAS  Google Scholar 

  6. Y. Zhang, X. Liu, Y. Wang, P. Jiang, S. Quek, Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Contro. 59, 282 (2016)

    Article  CAS  Google Scholar 

  7. Joint FAO/WHO Expert Committee on Food Additives, World Health Organization & Food and Agriculture Organization of the United Nations, Evaluation of certain food additives and the contaminants mercury, lead, and cadmium: sixteenth report of the Joint FAO (World Health Organization, Geneva, 1972)

  8. A. Marchese, R. Barbieri, E. Coppo, I.E. Orhan, M. Daglia, S.F. Nabavi, M. Izadi, M. Abdollahi, S.M. Nabavi, M. Ajami, Antimicrobial activity of eugenol and essential oils containing eugenol: a mechanistic viewpoint. Crit. Rev. Microbiol. 43(6), 668 (2017)

    Article  CAS  Google Scholar 

  9. R. Perugini Biasi-Garbin, E. Saori Otaguiri, A.T. Morey, M. Fernandes da Silva, A.E. Belotto Morguette, C. Armando Contreras Lancheros, D. Kian, M.R.E. Perugini, G. Nakazato, N. Durán, Effect of eugenol against Streptococcus agalactiae and synergistic interaction with biologically produced silver nanoparticles. Evid. Based Complement. Alternat. Med. 2015, 861497 (2015)

    Article  Google Scholar 

  10. M. Ghabraie, K.D. Vu, L. Tata, S. Salmieri, M. Lacroix, Antimicrobial effect of essential oils in combinations against five bacteria and their effect on sensorial quality of ground meat. LWT Food Sci. Technol. 66, 332 (2016)

    Article  CAS  Google Scholar 

  11. L.S. Bouryabaf, M. Moradi, H. Tajik, A. Badali, Biofilm removal and antimicrobial activities of agar hydrogel containing colloid nano-silver against Staphylococcus aureus and Salmonella typhimurium. J. Med. Bacteriol. 6(3–4), 51 (2017)

    CAS  Google Scholar 

  12. B. Khameneh, H. Zarei, B.S. Fazly Bazzaz, The effect of silver nanoparticles on Staphylococcus epidermidis biofilm biomass and cell viability. Nanomed. J. 1(5), 302 (2014)

    Google Scholar 

  13. A. Panáček, L. Kvítek, M. Smékalová, R. Večeřová, M. Kolář, M. Röderová, F. Dyčka, M. Šebela, R. Prucek, O. Tomanec, Bacterial resistance to silver nanoparticles and how to overcome it. Nat. Nanotechnol. 13(1), 65 (2018)

    Article  CAS  Google Scholar 

  14. S. Xing, C. Zhao, S. Jing, Z. Wang, Morphology and conductivity of polyaniline nanofibers prepared by ‘seeding’ polymerization. Polymer 47(7), 2305 (2006)

    Article  CAS  Google Scholar 

  15. F.-K. Liu, Y.-C. Hsu, M.-H. Tsai, T.-C. Chu, Using γ-irradiation to synthesize Ag nanoparticles. Mater. Lett. 61(11), 2402 (2007)

    Article  CAS  Google Scholar 

  16. H. Bar, D.K. Bhui, G.P. Sahoo, P. Sarkar, S.P. De, A. Misra, Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf. A Physicochem. Eng. Asp. 339(1), 134 (2009)

    Article  CAS  Google Scholar 

  17. H. Huang, X. Yang, Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydr. Res. 339(15), 2627 (2004)

    Article  CAS  Google Scholar 

  18. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment (ACS Publications, Washington, 2003).

    Google Scholar 

  19. A.I. El-Batal, F.M. Mosallam, G.S. El-Sayyad, Synthesis of metallic silver nanoparticles by fluconazole drug and gamma rays to inhibit the growth of multidrug-resistant microbes. J. Clust. Sci. 29(6), 1003 (2018)

    Article  CAS  Google Scholar 

  20. F. Chen, Z. Shi, K. Neoh, E. Kang, Antioxidant and antibacterial activities of eugenol and carvacrol-grafted chitosan nanoparticles. Biotechnol. Bioeng. 104(1), 30 (2009)

    Article  CAS  Google Scholar 

  21. A. El-Batal, A. El-Baz, F. Abo Mosalam, A. Tayel, Gamma irradiation induces silver nanoparticles synthesis by Monascus purpureus. J. Chem. Pharm. Res. 5(8), 1 (2013)

    Google Scholar 

  22. Q. Hu, H. Gerhard, I. Upadhyaya, K. Venkitanarayanan, Y. Luo, Antimicrobial eugenol nanoemulsion prepared by gum arabic and lecithin and evaluation of drying technologies. Int. J. Biol. Macromol. 87, 130 (2016)

    Article  CAS  Google Scholar 

  23. S. Uran, A. Alhani, C. Silva, Study of ultraviolet-visible light absorbance of exfoliated graphite forms. AIP Adv. 7(3), 035323 (2017)

    Article  CAS  Google Scholar 

  24. C. Yan, T. Wang, A new view for nanoparticle assemblies: from crystalline to binary cooperative complementarity. Chem. Soc. Rev. 46(5), 1483 (2017)

    Article  CAS  Google Scholar 

  25. A.I. El-Batal, F.M. Mosalam, M. Ghorab, A. Hanora, A.M. Elbarbary, Antimicrobial, antioxidant and anticancer activities of zinc nanoparticles prepared by natural polysaccharides and gamma radiation. Int. J. Biol. Macromol. 107, 2298 (2018)

    Article  CAS  Google Scholar 

  26. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 2013).

    Google Scholar 

  27. D.D. Evanoff Jr., G. Chumanov, Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 6(7), 1221 (2005)

    Article  CAS  Google Scholar 

  28. D.B. Williams, C.B. Carter, Transmission electron microscopy. Syst. Mater. Anal. 4, 407 (1978)

    Google Scholar 

  29. J.B. Hall, M.A. Dobrovolskaia, A.K. Patri, S.E. McNeil, Characterization of nanoparticles for therapeutics. Nanomedicine (Lond) 2(6), 789–803 (2007)

    Article  CAS  Google Scholar 

  30. A. Hanora, M. Ghorab, A.I. El-Batal, F.M.A. Mosalam, Synthesis and characterization of gold nanoparticles and their anticancer activity using gamma radiation. J. Chem. Pharm. Res. 8(3), 405 (2016)

    CAS  Google Scholar 

  31. E. Tomaszewska, K. Soliwoda, K. Kadziola, B. Tkacz-Szczesna, G. Celichowski, M. Cichomski, W. Szmaja, J. Grobelny, Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids. J. Nanomater. (2013). https://doi.org/10.1155/2013/313081

    Article  Google Scholar 

  32. A.I. El-Batal, H.A. Nasser, F.M. Mosallam, Fabrication and characterization of cobalt hyaluronic acid nanostructure via gamma irradiation for improving biomedical applications. Int. J. Biol. Macromol. 147, 1328 (2020)

    Article  CAS  Google Scholar 

  33. R.C. Murdock, L. Braydich-Stolle, A.M. Schrand, J.J. Schlager, S.M. Hussain, Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol. Sci. 101(2), 239 (2008)

    Article  CAS  Google Scholar 

  34. M.A. Botelho, G. Barros, D.B. Queiroz, C.F. Carvalho, J. Gouvea, L. Patrus, M. Bannet, D. Patrus, A. Rego, I. Silva, Nanotechnology in phytotherapy: antiinflammatory effect of a nanostructured thymol gel from Lippia sidoides in acute periodontitis in rats. Phytother. Res. 30(1), 152 (2016)

    Article  CAS  Google Scholar 

  35. X. Wu, Y. Chen, T. Yamaguchi, Hydrogen bonding in methanol studied by infrared spectroscopy. J. Mol. Spectrosc. 246(2), 187 (2007)

    Article  CAS  Google Scholar 

  36. K. Pramod, C.V. Suneesh, S. Shanavas, S.H. Ansari, J. Ali, Unveiling the compatibility of eugenol with formulation excipients by systematic drug-excipient compatibility studies. J. Anal. Sci. Technol. 6(1), 1 (2015)

    Article  CAS  Google Scholar 

  37. R. Kumar, P.F. Siril, Controlling the size and morphology of griseofulvin nanoparticles using polymeric stabilizers by evaporation-assisted solvent–antisolvent interaction method. J. Nanopart. Res. 17(6), 1 (2015)

    Article  CAS  Google Scholar 

  38. V.P. Zhdanov, Nanoparticles without and with protein corona: van der Waals and hydration interaction. J. Biol. Phys. 45(3), 307 (2019)

    Article  CAS  Google Scholar 

  39. T. Galo Cárdenas, L. Johana Sanzana, L.H. Inoccentini Mei, Synthesis and characterization of chitosan-PHB blends. Bol. Soc. Chil. Quím. 47(4), 529 (2002)

    Google Scholar 

  40. R.D. Rivera-Rangel, M.P. González-Muñoz, M. Avila-Rodriguez, T.A. Razo-Lazcano, C. Solans, Green synthesis of silver nanoparticles in oil-in-water microemulsion and nano-emulsion using geranium leaf aqueous extract as a reducing agent. Colloids Surf. A Physicochem. Eng. Asp. 536, 60 (2018)

    Article  CAS  Google Scholar 

  41. H. Fissan, S. Ristig, H. Kaminski, C. Asbach, M. Epple, Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization. Anal. Methods 6(18), 7324 (2014)

    Article  CAS  Google Scholar 

  42. X.-F. Zhang, Z.-G. Liu, W. Shen, S. Gurunathan, Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 17(9), 1534 (2016)

    Article  CAS  Google Scholar 

  43. N. Najmeh Feizi Langaroudi, N. Motakef Kazemi, Preparation and characterization of O/W nanoemulsion with Mint essential oil and Parsley aqueous extract and the presence effect of chitosan. Nanomed. Res. J. 4(1), 48 (2019)

    Google Scholar 

  44. P. Singh, Y.J. Kim, C. Wang, R. Mathiyalagan, D.C. Yang, Weissella oryzae DC6-facilitated green synthesis of silver nanoparticles and their antimicrobial potential. Artif. Cells Nanomed. Biotechnol. 44(6), 1569 (2016)

    Article  CAS  Google Scholar 

  45. M. Sanchez-Dominguez, M. Boutonnet, C. Solans, A novel approach to metal and metal oxide nanoparticle synthesis: the oil-in-water microemulsion reaction method. J. Nanopart. Res. 11(7), 1823 (2009)

    Article  CAS  Google Scholar 

  46. S. Dhingra, R.A. Cramer, Regulation of sterol biosynthesis in the human fungal pathogen Aspergillus fumigatus: opportunities for therapeutic development. Front. Microbiol. 8, 92 (2017)

    Article  Google Scholar 

  47. N.A. Gow, B. Yadav, Microbe Profile: Candida albicans: a shape-changing, opportunistic pathogenic fungus of humans. Microbiology 163(8), 1145 (2017)

    Article  CAS  Google Scholar 

  48. F. Donsì, G. Ferrari, Essential oil nanoemulsions as antimicrobial agents in food. J. Biotechnol. 233, 106 (2016)

    Article  CAS  Google Scholar 

  49. J.Y. Park, S.H. Kim, N.H. Kim, S.W. Lee, Y.-C. Jeun, J.K. Hong, Differential inhibitory activities of four plant essential oils on in vitro growth of Fusarium oxysporum f. sp. fragariae causing Fusarium wilt in strawberry plants. Plant Pathol. J. 33(6), 582 (2017)

    Article  CAS  Google Scholar 

  50. A. Guarda, J.F. Rubilar, J. Miltz, M.J. Galotto, The antimicrobial activity of microencapsulated thymol and carvacrol. Int. J. Food Microbiol. 146(2), 144 (2011)

    Article  CAS  Google Scholar 

  51. A.M. Cole, S. Tahk, A. Oren, D. Yoshioka, Y.-H. Kim, A. Park, T. Ganz, Determinants of Staphylococcus aureus nasal carriage. Clin. Diagn. Lab. Immunol. 8(6), 1064 (2001)

    Article  CAS  Google Scholar 

  52. H.A. Hong, R. Khaneja, N.M. Tam, A. Cazzato, S. Tan, M. Urdaci, A. Brisson, A. Gasbarrini, I. Barnes, S.M. Cutting, Bacillus subtilis isolated from the human gastrointestinal tract. Res. Microbiol. 160(2), 134 (2009)

    Article  CAS  Google Scholar 

  53. R.L. Vogt, L. Dippold, Escherichia coli O157: H7 outbreak associated with consumption of ground beef, June–July 2002. Public Health Rep. 120(2), 174 (2005)

    Article  Google Scholar 

  54. N.H. Dehkordi, H. Tajik, M. Moradi, S.A. Kousheh, R. Molaei, Antibacterial interactions of colloid nanosilver with eugenol and food ingredients. J. Food Prot. 82(10), 1783 (2019)

    Article  CAS  Google Scholar 

  55. H. Kaur, S. Kaur, M. Singh, Biosynthesis of silver nanoparticles by natural precursor from clove and their antimicrobial activity. Biologia 68(6), 1048 (2013)

    Article  CAS  Google Scholar 

  56. W.-C. Lu, D.-W. Huang, C.-C. Wang, C.-H. Yeh, J.-C. Tsai, Y.-T. Huang, P.-H. Li, Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. J. Food Drug Anal. 26(1), 82 (2018)

    Article  CAS  Google Scholar 

  57. A. Prakash, R. Baskaran, P. Nithyanand, V. Vadivel, Effect of nanoemulsification on the antibacterial and anti-biofilm activities of selected spice essential oils and their major constituents against Salmonella enterica Typhimurium. J. Clust. Sci. 31, 1123–1135 (2019)

    Article  CAS  Google Scholar 

  58. R. Pathania, R. Kaushik, M.A. Khan, Essential oil nanoemulsions and their antimicrobial and food applications. Curr. Res. Nutr. Food Sci. J. 6(3), 626 (2018)

    Article  Google Scholar 

  59. F. Donsì, M. Annunziata, M. Vincensi, G. Ferrari, Design of nanoemulsion-based delivery systems of natural antimicrobials: effect of the emulsifier. J. Biotechnol. 159(4), 342 (2012)

    Article  CAS  Google Scholar 

  60. W. Li, H. Chen, Z. He, C. Han, S. Liu, Y. Li, Influence of surfactant and oil composition on the stability and antibacterial activity of eugenol nanoemulsions. LWT Food Sci. Technol. 62(1), 39 (2015)

    Article  CAS  Google Scholar 

  61. H. Majeed, F. Liu, J. Hategekimana, H.R. Sharif, J. Qi, B. Ali, Y.-Y. Bian, J. Ma, W. Yokoyama, F. Zhong, Bactericidal action mechanism of negatively charged food grade clove oil nanoemulsions. Food Chem. 197, 75 (2016)

    Article  CAS  Google Scholar 

  62. Y. Chang, L. McLandsborough, D.J. McClements, Fabrication, stability and efficacy of dual-component antimicrobial nanoemulsions: essential oil (thyme oil) and cationic surfactant (lauric arginate). Food Chem. 172, 298 (2015)

    Article  CAS  Google Scholar 

  63. K.A. Abd-Elsalam, A.R. Khokhlov, Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds. Appl. Nanosci. 5(2), 255 (2015)

    Article  CAS  Google Scholar 

  64. V. Kumar, N. Sharma, A. Sourirajan, P.K. Khosla, K. Dev, Comparative evaluation of antimicrobial and antioxidant potential of ethanolic extract and its fractions of bark and leaves of Terminalia arjuna from north-western Himalayas, India. J. Tradit. Complement. Med. 8(1), 100 (2018)

    Article  CAS  Google Scholar 

  65. K. Punjabi, S. Mehta, R. Chavan, V. Chitalia, D. Deogharkar, S. Deshpande, Efficiency of biosynthesized silver and zinc nanoparticles against multi-drug resistant pathogens. Front. Microbiol. 9, 2207 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egypt.

Funding

No funding provided.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to the (1, 2 and 3) conception and design or the acquisition and analysis of Data and approval of the final submitted version and (1, 2) drafting or critically revising the manuscript.

Corresponding author

Correspondence to Farag M. Mosallam.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Ethical approval

The research protocol was approved by the Ethics of National Center for Radiation Research and Technology (NCRRT), Egypt,EAEA.

Constant of participate and publish

All authors agree to participate and publish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosallam, F.M., Helmy, E.A., Bendary, M.M. et al. Potency of a novel synthesized Ag-eugenol nanoemulsion for treating some bacterial and fungal pathogens. Journal of Materials Research 36, 1524–1537 (2021). https://doi.org/10.1557/s43578-021-00226-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00226-1

Keywords

Navigation